The Effect of CO in the Flue Gas on $H_2$ SCR

배가스 중 CO가 $H_2$ SCR 반응에 미치는 영향 연구

  • Kim, Sung-Su (Department of Environmental Energy Systems Engineering, Graduate School of Kyonggi University) ;
  • Hong, Sung-Chang (Department of Environmental Energy Systems Engineering, Kyonggi University)
  • 김성수 (경기대학교 대학원 환경에너지시스템공학과) ;
  • 홍성창 (경기대학교 환경에너지시스템공학과)
  • Received : 2010.03.02
  • Accepted : 2010.05.10
  • Published : 2010.08.10

Abstract

This study presents the effect of CO in flue gas on the $H_2$ SCR by Pt/$TiO_2$ catalyst. Coexisting CO which has characteristics of competitive adsorption with $H_2$ as a reductant on the active sites showed the decrease of catalytic activity. Competitive adsorption with NO, CO and $H_2$ also caused the reduction of activity and $H_2$, CO slip simultaneously. With increasing the inlet CO concentration, such phenomenon became more pronounced. Adding $PdO_2$ and $CeO_2$ on the catalyst to avoid the inhibition by coexisting CO, $CeO_2$ added catalyst exhibited the durability against CO which fed 100 ppm under.

본 연구는 Pt/$TiO_2$ 촉매를 이용한 $H_2$ SCR 반응에서 배가스 중 CO에 대한 영향을 조사하였다. 반응가스 중 공존하는 CO는 촉매표면의 활성점에서 환원제인 $H_2$와의 경쟁흡착을 유발하여 반응활성을 감소시키는 결과를 나타내었다. 또한 경쟁흡착은 반응활성의 감소와 함께 미반응 $H_2$ 및 CO의 생성을 야기하였으며 주입되는 CO의 농도가 증가할수록 이러한 현상들은 극심한 양상을 보였다. CO에 의한 inhibition을 최소화하기 위하여 $PdO_2$, $CeO_2$를 첨가하였으며 $CeO_2$를 첨가한 촉매가 100 ppm 이하의 공존 CO에 대한 내구성을 나타내었다.

Keywords

References

  1. S. S. Kim, H. J. Choi, and S. C. Hong, J. Korean Ind. Eng. Chem., 21, 18 (2010).
  2. R. J. Kokes, J. Phys. Chem., 70, 296 (1966). https://doi.org/10.1021/j100873a506
  3. T. P. Kobylinski and B. W. Taylor, J. Catal., 31, 450 (1973). https://doi.org/10.1016/0021-9517(73)90317-5
  4. T. P. Kobylinski and B. W. Taylor, J. Catal., 33, 376 (1973).
  5. R. Burch, P. J. Milington, and A. P. Walker, Appl. Catal., B, 4, 65 (1994). https://doi.org/10.1016/0926-3373(94)00014-X
  6. K. Tomishige, K. Asakura, and Y. Iwasawa, J. Catal., 157, 472 (1995). https://doi.org/10.1006/jcat.1995.1312
  7. W. C. Hecker and A. T. Bell, J. Catal., 92, 247 (1985). https://doi.org/10.1016/0021-9517(85)90259-3
  8. A. Hornung, M. Muhler, and G. Ertl, Catal. Lett., 53, 77 (1998). https://doi.org/10.1023/A:1019072915187
  9. K. C. Taylor and R. L. Klimisch, J. Catal., 30, 478 (1973). https://doi.org/10.1016/0021-9517(73)90166-8
  10. S. J. Huang, A. B. walters, and M. A. Vannice, J. Catal., 173, 229 (1998). https://doi.org/10.1006/jcat.1997.1911
  11. R. Burch, A. A. Shestov, and J. A. Sullivan, J. Catal., 186, 353 (1999). https://doi.org/10.1006/jcat.1999.2566
  12. C. Samanta and V. R. Choudhary, Chem. Eng. Sci., 136, 126 (2008). https://doi.org/10.1016/j.cej.2007.03.016
  13. F. Liang, H. Zhu, Z. Qin, G. Wang, and J. Wang, Catal. Commun., 10, 737 (2009). https://doi.org/10.1016/j.catcom.2008.11.031
  14. M. Luo, M. He, Y. L. Xie, P. Fang, and L. Y. Jin, Appl. Catal., B, 69, 213 (2007). https://doi.org/10.1016/j.apcatb.2006.06.023
  15. X. Tang, J. Chen, X. Huang, Y. Xu, and W. Shen, Appl. Catal., B, 81, 115 (2008). https://doi.org/10.1016/j.apcatb.2007.12.007