• Title/Summary/Keyword: Redox flow batteries

Search Result 36, Processing Time 0.027 seconds

Numerical study of effect of membrane properties on long-cycle performance of vanadium redox flow batteries

  • Wei, Zi;Siddique, N.A.;Liu, Dong;Sakri, Shambhavi;Liu, Fuqiang
    • Advances in Energy Research
    • /
    • v.4 no.4
    • /
    • pp.285-297
    • /
    • 2016
  • Fundamental understanding of vanadium ion transport and the detrimental effects of cross-contamination on vanadium redox flow battery (VRFB) performance is critical for developing low-cost, robust, and highly selective proton-conducting membranes for VRFBs. The objective of this work is to examine the effect of conductivity and diffusivity, two key membrane parameters, on long-cycle performance of a VRFB at different operating conditions using a transient 2D multi-component model. This single-channel model combines the transport of vanadium ions, chemical reactions between permeated ions, and electrochemical reactions. It has been discovered that membrane selecting criterion for long cycles depends critically on current density and operating voltage range of the cell. The conducted simulation work is also designed to study the synergistic effects of the membrane properties on dynamics of VRFBs as well as to provide general guidelines for future membrane material development.

Characterization of Commercial Membranes for Non-aqueous Vanadium Redox Flow Battery (비수계 바나듐 레독스 흐름 전지를 위한 상용 멤브레인의 특성분석)

  • Sung, Ki-Won;Shin, Sung-Hee;Moon, Seung-Hyeon
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.615-621
    • /
    • 2013
  • Membrane characterization methods for aqueous redox flow batteries aqueous RFBs were modified for non-aqueous RFBs. The modified characterization methods, such as ion exchange capacity, transport number, permeability and single cell test, were carried out to evaluate commercial membranes in non-aqueous electrolyte. It was found that columbic efficiency and energy efficiency in a single cell test were dependent on the ion selectivity of commercial anion exchange membranes. Neosepta AHA anion exchange membrane showed the anion transport number of 0.81, which is a relatively low ion selectivity in non-aqueous electrolyte, however, exhibited 92% of coulombic efficiency and 86% of energy efficiency in a single cell test. It was also found that a porous membrane without ion selectivity is suitable for a non-aqueous redox flow battery at a high current density.

Corrosion and Surface Resistance of Ni-C Composite by Electrodeposition (전해도금에 의한 Ni-C 복합층의 내식성 및 표면 전기저항)

  • Park, Je-Sik;Lee, Sung-Hyung;Jeong, Goo-Jin;Lee, Churl-Kyoung
    • Korean Journal of Materials Research
    • /
    • v.21 no.5
    • /
    • pp.288-294
    • /
    • 2011
  • Simultaneous Ni and C codeposition by electrolysis was investigated with the aim of obtaining better corrosion resistivity and surface conductivity of a metallic bipolar plate for application in fuel cells and redox flow batteries. The carbon content in the Ni-C composite plate fell in a range of 9.2~26.2 at.% as the amount of carbon in the Ni Watt bath and the roughness of the composite were increased. The Ni-C composite with more than 21.6 at.% C content did not show uniformly dispersed carbon. It also displayed micro-sized defects such as cracks and crevices, which result in pitting or crevice corrosion. The corrosion resistance of the Ni-C composite in sulfuric acid is similar with that of pure Ni. Electrochemical test results such as passivation were not satisfactory; however, the Ni-C composite still displayed less than $10^{-4}$ $A/cm^2$ passivation current density. Passivation by an anodizing technique could yield better corrosion resistance in the Ni-C composite, approaching that of pure Ni plating. Surface resistivity of pure Ni after passivation was increased by about 8% compared to pure Ni. On the other hand, the surface resistivity of the Ni-C composite with 13 at.% C content was increased by only 1%. It can be confirmed that the metal plate electrodeposited Ni-C composite can be applied as a bipolar plate for fuel cells and redox flow batteries.

Recent Advance on Composite Membrane Based Vanadium Redox Flow Battery (복합막 기반 바나듐 레독스 흐름 전지의 최근 발전)

  • Kyobin Yoo;Rajkumar Patel
    • Membrane Journal
    • /
    • v.33 no.5
    • /
    • pp.233-239
    • /
    • 2023
  • The transport properties of membranes used in vanadium redox flow batteries (VRFB) are fundamental in battery performance. High proton conductivity and low vanadium ion permeability must be achieved to achieve high battery performance. However, there is a trade-off relationship between proton conductivity and vanadium ion permeability. So, solving this trade-off relationship is crucial in VRFB development. Also, maintaining high coulombic efficiency, voltage efficiency, and energy efficiency is essential for high-performing VRFB. Recently, various attempts have been made, primarily on composite membranes and SPEEK membranes, to overcome the existing limit of Nafion membranes. VRFB is an essential class of rechargeable battery in composite membranes reviewed here.

Optimum Design of Pore-filled Anion-exchange Membranes for Efficient All-vanadium Redox Flow Batteries (효율적인 전 바나듐 레독스 흐름 전지를 위한 세공충진 음이온교환막의 최적 설계)

  • Kim, Yu-Jin;Kim, Do-Hyeong;Kang, Moon-Sung
    • Membrane Journal
    • /
    • v.30 no.1
    • /
    • pp.21-29
    • /
    • 2020
  • In this study, we have established the optimum design condition of pore-filled anion-exchange membrane for all-vanadium redox flow battery (VRFB). From the experimental results, it was proven that the membrane design factors that have the greatest influence on the charge-discharge performance of VRFB are the ion exchange capacity, the porosity of substrate film, and the crosslinking degree. That is, the ohmic loss and the crossover of active materials in VRFB were shown to be determined by the above factors. In addition, two methods, i.e. reducing the ion exchange capacity at low crosslinking degree and increasing the crosslinking degree at high ion exchange capacity, were investigated in the preparation of pore-filled anion-exchange membranes. As a result, it was found that optimizing the crosslinking degree at sufficiently high ion exchange capacity is more desirable to achieving high VRFB charge-discharge performances.

Development of Thermoplastic Carbon Composite Hybrid Bipolar Plate for Vanadium Redox Flow Batteries (VRFB) (바나듐 레독스 흐름전지용 열가소성 탄소 복합재료 하이브리드 분리판 개발)

  • Jun Woo Lim
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.422-428
    • /
    • 2023
  • The electrical contact resistance between the bipolar plate (BP) and the carbon felt electrode (CFE), which are in contact by the stack clamping pressure, has a great impact on the stack efficiency because of the relatively low clamping pressure of the vanadium redox flow battery (VRFB) stack. In this study, a polyethylene (PE) composite-CFE hybrid bipolar plate structure is developed through a local heat welding process to reduce such contact resistance and improve cell performance. The PE matrix of the carbon fiber composite BP is locally melted to create a direct contact structure between the carbon fibers of CFE and the carbon fibers of BP, thereby reducing the electrical contact resistance. Area specific resistance (ASR) and gas permeability are measured to evaluate the performance of the PE composite-CFE hybrid bipolar plate. In addition, an acid aging test is performed to measure stack reliability. Finally, a VFRB unit cell charge/discharge test is performed to compare and analyze the performance of the developed PE composite-CFE hybrid BP and the conventional BP.

A Study on the Effect of Different Functional Groups in Anion Exchange Membranes for Vanadium Redox Flow Batteries (바나듐 산화환원 흐름전지를 위한 음이온교환막의 관능기에 따른 특성 연구)

  • Lee, Jae-Myeong;Lee, Mi-Soon;Nahm, Ki-Seok;Jeon, Jae-Deok;Yoon, Young-Gi;Choi, Young-Woo
    • Membrane Journal
    • /
    • v.27 no.5
    • /
    • pp.415-424
    • /
    • 2017
  • Commonly cation exchange membranes have been used for vanadium redox flow batteries. However, a severe vanadium ion cross-over causes low energy efficiency. Thus in this study, we prepared 3 different anion exchange membranes to investigate the effect on the membrane properties such as vanadium ion cross-over and long term stability. The base membranes were prepared by an electrolyte pore filling technique using vinyl benzyl chloride (VBC), divinylbenzene (DVB) within a porous polyethylene (PE) substrate. Then 3 different functional amines were introduced into the base membranes, respectively. These resulting membranes were evaluated by physico-chemical properties such as ion exchange capacity, dimensional stability, vanadium ion cross-over and membrane area resistance. Conclusively, TEA-functionalized membrane showed longest term stability than other membranes although all the membranes are similar to coulombic efficiency.

Aminopropyl Functionalized Silica Nanoparticle Dispersed Nafion Composite Membranes for Vanadium Redox Flow Batteries (아미노프로필 관능기를 갖는 실리카 나노 입자가 분산된 나피온 복합막을 이용한 바나듐 레독스 흐름 전지)

  • Lee, Doohee;Yu, Duk Man;Yoon, Sang Jun;Kim, Sangwon;So, Soonyong;Hong, Young Taik
    • Membrane Journal
    • /
    • v.30 no.5
    • /
    • pp.307-318
    • /
    • 2020
  • Conventional perfluorinated sulfonic acid membrane, Nafion is widely used for vanadium redox flow battery (VRFB). It is desired to prevent vanadium ion permeation through a membrane to retain the capacity, and to keep the cell efficiency of a VRFB. Highly proton conductive and chemically stable Nafion membranes, however, suffer from high vanadium permeation, which induce the reduction in charge and discharge capacity by side reactions of vanadium ions. In this study, to resolve the issue, silica nanoparticles, which are functionalized with 3-aminopropyl group (fS) are introduced to enhance the long-term performance of a VRFB by lowering vanadium permeation. It is expected that amine groups on silica nanoparticles are converted to positive ammonium ion, which could deteriorate positively charged vanadium ions' crossover by Gibbs-Donnan effect. There is reduction in proton conductivity may due to acid-base complexation between fS and Nafion side chains, but ion selectivity of proton to vanadium ion is enhanced by introducing fS to Nafion membranes. With the composite membranes of Nafion and fS, VRFBs maintain their discharge capacity up to 80% at a high current density of 150 mA/㎠ during 200 cycles.

Preparation of V3.5+ Electrolyte for Vanadium Redox Flow Batteries using Carbon Supported Pt Dendrites Catalyst (카본 담지 백금 덴드라이트 촉매를 이용한 바나듐 레독스 흐름전지용 3.5가 바나듐 전해질의 제조)

  • Lee, Hojin;Kim, Hansung
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.4
    • /
    • pp.113-119
    • /
    • 2021
  • In this study, impurity free V3.5+ electrolytes were prepared using formic acid as a reducing agent and PtD/C as a catalyst and it was applied to VRFB. The well-oriented 3D dendrite structure of the PtD/C catalyst showed high catalytic activity in formic acid oxidation reaction and vanadium reduction reaction. As a result, the conversion ratio of electrolyte using the PtD/C was 2.73 mol g-1 h-1, which was higher than that of 1.67 mol g-1 h-1 of Pt/C prepared by the polyol method. In addition, in the VRFB charging and discharging experiment, the V3.5+ electrolyte produced by the catalytic reaction showed the same performance as the standard V3.5+ electrolyte prepared by the electrolytic method, thus proving that it can be used as an electrolyte for VRFB.

Prediction of Life Time of Ion-exchange Membranes in Vanadium Redox Flow Battery (바나듐 레독스 흐름전지용 이온교환막의 수명 예측)

  • Cho, Kook-Jin;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.1
    • /
    • pp.14-20
    • /
    • 2016
  • Vanadium redox flow battery (VRFB) is an energy conversion device in which charging and discharging are alternatively carried out by oxidation and reduction reactions of vanadium ions with different oxidation states. VRFB consists of electrolyte, electrode, ion-exchange membrane, etc. The role of ion-exchange membranes in VRFB separates anolyte and catholyte and provides a high conductivity to hydrogen ions. Recently much attention has been devoted to develop ideal ion-exchange membranes for VRFB. A number of developed ion-exchange membranes should be evaluated to find out ideal ion-exchange membranes for VRFB. Long-term durability test is a crucial characterization of ion-exchange membranes for commercialization, but is very time-consuming. In this study, the life time prediction protocol of ion-exchange membranes in VRFB cell tests was developed through short-term single cell performance evaluation (real total operation time, 87.5 hrs) at three different current densities. We confirmed a decrease in test time up to 96.2% of real durability tests (expected total operation time, 2,296 hrs) and 5~6% of relative error discrepancy between the predicted and the real life time in a unit cell.