DOI QR코드

DOI QR Code

Preparation of V3.5+ Electrolyte for Vanadium Redox Flow Batteries using Carbon Supported Pt Dendrites Catalyst

카본 담지 백금 덴드라이트 촉매를 이용한 바나듐 레독스 흐름전지용 3.5가 바나듐 전해질의 제조

  • Lee, Hojin (Dept. of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Hansung (Dept. of Chemical and Biomolecular Engineering, Yonsei University)
  • 이호진 (연세대학교화공생명공학과) ;
  • 김한성 (연세대학교화공생명공학과)
  • Received : 2021.07.23
  • Accepted : 2021.10.15
  • Published : 2021.11.30

Abstract

In this study, impurity free V3.5+ electrolytes were prepared using formic acid as a reducing agent and PtD/C as a catalyst and it was applied to VRFB. The well-oriented 3D dendrite structure of the PtD/C catalyst showed high catalytic activity in formic acid oxidation reaction and vanadium reduction reaction. As a result, the conversion ratio of electrolyte using the PtD/C was 2.73 mol g-1 h-1, which was higher than that of 1.67 mol g-1 h-1 of Pt/C prepared by the polyol method. In addition, in the VRFB charging and discharging experiment, the V3.5+ electrolyte produced by the catalytic reaction showed the same performance as the standard V3.5+ electrolyte prepared by the electrolytic method, thus proving that it can be used as an electrolyte for VRFB.

본 연구에서는 유기환원제로 포름산과 촉매로 PtD/C를 사용하여 불순물이 없는 고품질 V3.5+ 전해질을 생산하였고 이를 VRFB에 적용하였다. PtD/C 촉매의 잘 배향된 3D 수상 돌기 구조는 포름산 산화 반응과 바나듐 환원 반응에 높은 활성을 보여 주었다. 그 결과 PtD/C의 촉매 전환율은 2.73 mol g-1 h-1로 polyol방법을 제조된 Pt/C의 전환율 1.67 mol g-1 h-1보다 더 높았다. 또한 VRFB 충방전 실험에서 촉매 반응으로 생성된 V3.5+ 전해질은 전해 방법으로 제조 된 표준V3.5+전해질과 동일한 성능을 보여 줌으로서 VRFB의 전해질로 사용 가능함을 증명하였다.

Keywords

Acknowledgement

이 논문은 2016년도 한국전력공사의 재원으로 한전전력연구원(과제 번호: No. R16EA06) 및 2018 년도 산업통상자원부의 재원으로 한국에너지기술평가원(과제 번호: No. 20172420108480)의 지원으로 수행된 연구결과 입니다.

References

  1. B. Dunn, H. Kamath, and J-M. Tarascon, 'Electrical Energy Storage for the Grid: A Battery of Choices', Science, 334, 928 (2011). https://doi.org/10.1126/science.1212741
  2. C. Koroneos, T. Spachos, and N. Moussiopoulos, 'Exergy analysis of renewable energy sources', Renewable Energy, 28, 295 (2003). https://doi.org/10.1016/S0960-1481(01)00125-2
  3. J. E. Halls, A. Hawthornthwaite, R. J. Hepworth, N. A. Roberts, K. J. Wright, Y. Zhou, S. J. Haswell, S. K. Haywood, S. M. Kelly, N. S. Lawrencec, and J. D. Wadhawan, 'Empowering the smart grid: can redox batteries be matched to renewable energy systems for energy storage?', Energy Environ. Sci., 6, 1026 (2013). https://doi.org/10.1039/c3ee23708g
  4. W. Wang, Q. Luo, B. Li, W. Wei, L. Li, and Z. Yang, 'Recent Progress in Redox Flow Battery Research and Development', Advanced Functional Material, 23, 970 (2013). https://doi.org/10.1002/adfm.201200694
  5. S. Park, H. Lee, H. J. Lee, and H. Kim, 'New hybrid redox flow battery with high energy density using V-Mn/V-Mn multiple redox couples', Journal of Power Sources, 451, 227746 (2020). https://doi.org/10.1016/j.jpowsour.2020.227746
  6. L. Li, S. Kim, W. Wang, M. Vijayakumar, Z. Nie, B. Chen, J. Zhang, G. Xia, J. Hu, G. Graff, J. Liu, and Z. Yang, 'A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-Scale Energy Storage', Adv. Energy Mater., 1, 394 (2011). https://doi.org/10.1002/aenm.201100008
  7. M. Rychcik, and M. Skyllas-Kazacos, 'Characteristics of a New All-Vanadium Redox Flow Battery', Journal of Power Sources, 22, 59 (1988). https://doi.org/10.1016/0378-7753(88)80005-3
  8. G. Kear, A. A. Shah, and F. C. Walsh, 'Development of the all-vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects', Int. J. Energy Res., 36, 1105 (2012). https://doi.org/10.1002/er.1863
  9. C. Minke, U. Kunz, and T. Turek, 'Techno-economic assessment of novel vanadium redox flow batteries with large-area cells', Journal of Power Sources, 361,105 (2017). https://doi.org/10.1016/j.jpowsour.2017.06.066
  10. W. N. Li, R. Zaffou, C. Shovlin, M. Perry, and Y. She, 'Vanadium Redox-Flow-Battery Electrolyte Preparation with Reducing Agents', ECS Transactions, 53, 93 (2013).
  11. M. Dassisti , G. Cozzolino , M. Chimienti , A. Rizzuti , P. Mastrorilli, and P. L'Abbate, 'Sustainability of vanadium redox-flow batteries: Benchmarking electrolyte synthesis procedures', International Journal of Hydrogen Storage, 41, I6477 (2016).
  12. C. Choi, S. Kim, R. Kim, Y. Choi, S. Kim, H-Y. Jung, J. H. Yang, and H-T. Kim, 'A review of vanadium electrolytes for vanadium redox flow batteries', Renewable and Sustainable Energy Reviews, 69, 263 (2017). https://doi.org/10.1016/j.rser.2016.11.188
  13. M. Skyllas-Kazacos, L. Cao, M. Kazacos, N. Kausar, and A. 'Mousa, Vanadium Electrolyte Studies for the Vanadium Redox Battery-A Review', ChemSusChem, 9, 1521 (2016). https://doi.org/10.1002/cssc.201600102
  14. L. Cao, M. Skyllas-Kazacos, C. Menictas, and J. Noack, 'A review of electrolyte additives and impurities in vanadium redox flow batteries', Journal of Energy Chemistry, 27, 1269 (2018). https://doi.org/10.1016/j.jechem.2018.04.007
  15. Q. Kang, Y. Zhang, and S. Bao, 'Cleaning method of vanadium precipitation from stripped vanadium solution using oxalic acid', Powder Technology, 355, 667 (2019). https://doi.org/10.1016/j.powtec.2019.07.056
  16. J. Heo, J-Y. Han, S. Kim, S. Yuk, C. Choi, R. Kim, J-H. Lee, A. Klassen, S-K. Ryi, and H-T. Kim, 'Catalytic production of impurity-free V3.5+ electrolyte for vanadium redox flow batteries', Nature Communications, 10, 4412 (2019). https://doi.org/10.1038/s41467-019-12363-7
  17. W. H. Lee, and H. Kim, 'Oxidized iridium nanodendrites as catalysts for oxygen evolution reactions', Catalysis Communications, 12, 408 (2011). https://doi.org/10.1016/j.catcom.2010.11.003
  18. W. H. Lee, and H. Kim, 'Electrocatalytic activity and durability study of carbon supported Pt nanodendrites in polymer electrolyte membrane fuel cells', International Journal of Hydrogen Storage, 38, 7126 (2013). https://doi.org/10.1016/j.ijhydene.2013.04.002
  19. H-S. Oh, J-G. Oh, and H.Kim, 'Modification of polyol process for synthesis of highly platinum loaded platinum-carbon catalysts for fuel cells', Journal of Power Sources, 183, 600 (2008). https://doi.org/10.1016/j.jpowsour.2008.05.070
  20. X. Zhu, L. Huang, M. Wei, P. Tsiakaras and P. K. Shen, 'Highly stable Pt-Co nanodendrite in nanoframe with Pt skin structured catalyst for oxygen reduction electrocatalysis', Applied Catalysis B: Environmental, 281, 119460, (2021) https://doi.org/10.1016/j.apcatb.2020.119460
  21. W. H. Lee, C. Lim, E. Ban, S. Bae, J. Ko, H-S. Lee, B. K. Min, K-Y. Lee, J. S. Yu, and H-S. Oh, 'W@Ag dendrites as efficient and durable electrocatalyst for solar-to-CO conversion using scalable photovoltaic-electrochemical system', Applied Catalysis B: Environmental, 297, 120427, (2021) https://doi.org/10.1016/j.apcatb.2021.120427