DOI QR코드

DOI QR Code

Prediction of Life Time of Ion-exchange Membranes in Vanadium Redox Flow Battery

바나듐 레독스 흐름전지용 이온교환막의 수명 예측

  • Cho, Kook-Jin (Department of Environmental Engineering, College of Engineering, Sangmyung University) ;
  • Park, Jin-Soo (Department of Environmental Engineering, College of Engineering, Sangmyung University)
  • 조국진 (상명대학교 공과대학 환경공학과) ;
  • 박진수 (상명대학교 공과대학 환경공학과)
  • Received : 2015.12.11
  • Accepted : 2016.01.05
  • Published : 2016.02.29

Abstract

Vanadium redox flow battery (VRFB) is an energy conversion device in which charging and discharging are alternatively carried out by oxidation and reduction reactions of vanadium ions with different oxidation states. VRFB consists of electrolyte, electrode, ion-exchange membrane, etc. The role of ion-exchange membranes in VRFB separates anolyte and catholyte and provides a high conductivity to hydrogen ions. Recently much attention has been devoted to develop ideal ion-exchange membranes for VRFB. A number of developed ion-exchange membranes should be evaluated to find out ideal ion-exchange membranes for VRFB. Long-term durability test is a crucial characterization of ion-exchange membranes for commercialization, but is very time-consuming. In this study, the life time prediction protocol of ion-exchange membranes in VRFB cell tests was developed through short-term single cell performance evaluation (real total operation time, 87.5 hrs) at three different current densities. We confirmed a decrease in test time up to 96.2% of real durability tests (expected total operation time, 2,296 hrs) and 5~6% of relative error discrepancy between the predicted and the real life time in a unit cell.

바나듐 레독스 흐름 전지는 서로 다른 산화수를 가지는 이온의 산화 환원 반응을 이용하여 전기에너지와 화학에너지를 상호 변환하여 충전 및 방전하는 원리의 에너지 변환 장치로, 구동 중요 요소로는 전극, 전해액, 이온교환막이 있다. 여기서 이온교환막은 산화 환원 반응의 수소이온의 전달 및 전해액을 분리하는 역할을 하며, 이상적인 특징으로는 높은 내산성, 낮은 저항과 높은 수소 전도도와 낮은 바나듐 이온의 투과성과 낮은 가격이다. 최근 이러한 목표에 도달하기 위해서 이온 교환막에 대한 활발한 개발이 이루어지고 있다. 개발된 이온교환막은 여러 물성 평가를 통해 적합막인지 판별하며, 그 평가 중 장기 내구성 평가는 막대한 시간이 걸린다. 이러한 단점을 보완하고자 본 연구에서는 평가 시간이 긴 낮은 전류밀도부터 평가 시간이 짧은 고 전류밀도에서 수행한 단기 실험(총 운전시간 87.5 시간)을 통하여 하나의 식을 만들어 그 수명을 예측하였으며, 실제 장기 내구성 평가(총 예상 운전시간 2,296 시간)를 진행하여 해당 식의 오차율이 5~6%로 적용 타당성을 확인하였다. 그 결과 본 식을 통하여 수명을 예측할 경우 96.2%의 시간을 단축시킬 수 있었다.

Keywords

References

  1. W. Dai, L. Yu, Z. Li, J. Yan, L. Liu, J. Xi, and X. Qiu, 'Sulfonated Poly (Ether Ether Ketone)/Graphene composite membrane for vanadium redox flow battery', Electrochim. Acta, 132, 200 (2014). https://doi.org/10.1016/j.electacta.2014.03.156
  2. X. Teng, J. Dai, F. Bi, and G. Yin, 'Ultra-thin polytetrafluoroethene/Nafion/silica composite membrane with high performance for vanadium redox flow battery', J. Power Sources, 272, 113 (2014). https://doi.org/10.1016/j.jpowsour.2014.08.060
  3. B. Yin, Z. Li, W. Dai, L. Wang, L. Yu, and J. Xi, 'Highly branched sulfonated poly(fluorenyl ether ketone sulfone)s membrane for energy efficient vanadium redox flow battery', J. Power Sources, 285, 109 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.102
  4. B. Hwang, K. Kim, 'Redox pairs in redox flow batteries', J. Korean Electrochem. Soc., 16, 99 (2013) https://doi.org/10.5229/JKES.2013.16.3.99
  5. S. Liu, L. Wang, Y. Ding, B. Liu, X. Han, and Y. Song, 'Novel sulfonated poly (ether ether keton)/polyetherimide acid-base blend membranes for vanadium redox flow battery applications', Electrochim. Acta, 130, 90 (2014). https://doi.org/10.1016/j.electacta.2014.02.144
  6. Y. Li, H. Zhang, H. Zhang, J. Cao, W. Xu, and X. Li, 'Hydrophilic porous poly (sulfone) membranes modified by UV-initiated polymerization for vanadium flow battery application', J. Membrane Sci., 454, 478 (2014). https://doi.org/10.1016/j.memsci.2013.12.015
  7. S. K. Park, J. Shim, J. H. Yang, C. S. Jin, B. S. Lee, and J. D. Jeon, 'The influence of compressed carbon felt electrodes on the performance of a vanadium redox flow battery', Electrochim. Acta, 116, 447 (2014). https://doi.org/10.1016/j.electacta.2013.11.073
  8. A. Chromik, A. R. dos Santos, T. Turek, U. Kunz, T. Haring, and J. Kerres, 'Stability of acid-excess acid-base blend membranes in all-vanadium redox-flow batteries', J. Membr. Sci., 476, 148 (2015). https://doi.org/10.1016/j.memsci.2014.11.036
  9. X. Wu, H. Xu, L. Lu, H. Zhao, J. Fu, Y. Shen, and Y. Dong, '$PbO_2$-modified graphite felt as the positive electrode for an all-vanadium redox flow battery', J. Power Sources, 250, 274 (2014). https://doi.org/10.1016/j.jpowsour.2013.11.021
  10. Z. Li, W. Dai, L. Yu, J. Xi, X. Qiu, and L. Chen, 'Sulfonated poly (ether ether ketone)/mesoporous silica hybrid membrane for high performance vanadium redox flow battery', J. Power Sources, 257, 221 (2014). https://doi.org/10.1016/j.jpowsour.2014.01.127
  11. J. Xi, Z. Wu, X. Qiu, and L. Chen, 'Nafion/$SiO_2$ hybrid membrane for vanadium redox flow battery', J. Power Sources, 166, 531 (2007). https://doi.org/10.1016/j.jpowsour.2007.01.069
  12. J. Kim, J. D. Jeon, and S. Y. Kwak, 'Nafion-based composite membrane with a permselective layered silicate layer for vanadium redox flow battery', Electrochem. Commun., 38, 68 (2014). https://doi.org/10.1016/j.elecom.2013.11.002
  13. C. H. Lin, M. C. Yang, and H. J. Wei, 'Amino-silica modified Nafion membrane for vanadium redox flow battery' J. Power Sources, 282, 562 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.102
  14. S. Kim, T. B, Tighe, B. Schwenzer, J. Yan, J. Zhang, J. Liu, Z. Yang, and M. A. Hickner, "Chemical and mechanical degradation of sulfonated poly (sulfone) membranes in vanadium redox flow batteries', J. Appl. Electrochem., 41, 1201 (2011). https://doi.org/10.1007/s10800-011-0313-0
  15. X. Teng, J. Dai, J. Su, and G. Yin, 'Modification of Nafion membrane using fluorocarbon surfactant for all vanadium redox flow battery', J. Membr. Sci., 476, 20 (2015). https://doi.org/10.1016/j.memsci.2014.11.014

Cited by

  1. Development of Ionomer Binder Solutions Using Polymer Grinding for Solid Alkaline Fuel Cells vol.19, pp.3, 2016, https://doi.org/10.5229/JKES.2016.19.3.107