• Title/Summary/Keyword: Red-Tide

Search Result 418, Processing Time 0.026 seconds

Composition of Fatty Acid and the Effect of Environmental Factors on the Population Growth of Scrippsiella trochoidea a Dinoflagellate Responsible for a Red Tide (적조와편모조 Scrippsiella trochoidea 군증식에 미치는 환경요인과 지방산 조성)

  • LIM Wol-Ae;KIM Hak-Gyoon;LEE Won-Jae;LEE Sam-Seuk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.2
    • /
    • pp.198-203
    • /
    • 1993
  • The cyst of Scrippsiella trochoidea from the surface mud in Masan Bay was germinated in the incubator for the culture. This species was one of dinoflagellates responsible for the early spring bloom in the southern coastal water of Korea. The culture experiments were carried out under the various gradients of environmental factors to know their effects on the population growth of this dinoflagellate. With respect to the effects of environmental factors on the growth, it was proved that the maximum cell growth was occurred at 4,000 lux of light intensity, salinity $30\%0$ and temperature $20^{\circ}C$. When 0.25ml/ml of the filtrates of Skeletonema costatum culture medium and the supernatants of soil extracts were added to growth medium as organic growth stimulants, both materials enhanced the population growth. In the fatty acid composition of S. trochoidea, $C_{16:0}$ was the major component, and $C_{18:0},\;C_{18:1},\;C_{22:0}\;and\;C_{22:1}$ were a minor components.

  • PDF

Effect of MLSS and Micro-algae on Nitrification based Photosynthetic Oxygen (MLSS와 미세조류가 광합성 산소기반 질산화에 미치는 영향)

  • Lee, Jiwon;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.508-514
    • /
    • 2017
  • Water-bloom and red tide due to eutrophication have been overgrown and have caused various environmental problems. Recently, however, research on bid-diesel that can utilize algae as an energy source has been actively carried out. In particular, many studies variously have been conducted to utilize algal photosynthesis oxygen as a supply method for reducing the energy by an air blower in MWTP. In this study, a lab scale algae-nitrification reactor was operated to replace the oxygen required for nitrogen removal and the operation period was largely divided into three sections. In the first section, ammonia nitrogen removal efficiency was 24 ~ 38% according to the MLSS (Mixed Liquer Suspended Solid) concentration. In the second section, ammonia nitrogen removal efficiency was 38 ~ 50% according to the micro-algae concentration and in the last section ammonia nitrogen removal efficiency was 61 ~ 80% according to HRT (Hydraulic Retention Time). As a result, as the MLSS decreased and algae biomass increased, the ammonia nitrogen removal efficiency tended to increase, but the effect of Algae biomass was greater than that of MLSS.

Effect of Body Size on Feeding Physiology of an Intertidal Bivalve, Glauconome chinensis Gray (Glauconomidae)

  • Lee Chang-Hoon;Song Jae Yoon;Chung Ee-Yung
    • Fisheries and Aquatic Sciences
    • /
    • v.5 no.3
    • /
    • pp.183-190
    • /
    • 2002
  • To determine the effect of body size on the clearance rate and ingestion rate of small intertidal bivalves, Glauconome chinensis, feeding experiments were conducted on individuals of 12 different size classes, from 4 to 16 mm in shell length. Relationships between morphological parameters were also determined. The clearance and ingestion rates of G. chinensis responded similarly to their body size, ranging from 1.3 to 28.2 mL/hr/ind. and from 24.0 to 458.5, ${\mu}gC/hr/ind$., respectively. Both rates increased significantly (p<0.001) as shell length increased from 4 to 9 mm, although neither rate changed significantly when shell length was in the range from 12 to 16 mm. The weight-specific clearance rate $(CR_w)$ and ingestion rate $(IR_w)$ decreased with increasing body size, with values from 1.0 to 3.1 L/hr/g and from 17.9 to 51.3 mgC/hr/g, respectively. The $CR_w$ of G. chinensis was intermediate compared to those of larger bivalve species. The clearance rate (CR) relative to flesh dry weight (FDW) of G. chinensis were fitted well to the power function: $CR=0.43\times(FDW)^{0.71}\;(r^2=0.89)$. The exponent of fitting equation (0.71) of G. chinensis was higher than those of Mytilus edulis (Walne, 1972), Crassostrea gigas (Walne, 1972), and Placopecten magellanicus (MacDonald and Thompson, 1986).

Marine Environment Monitoring and Analysis System Model (해양환경 모니터링 및 분석 시스템의 모델)

  • Park, Sun;Kim, Chul Won;Lee, Seong Ro
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2113-2120
    • /
    • 2012
  • The study of automatic monitoring and analysis of marine environment in Korea is not enough. Recently, the marine monitoring technology is actively being studied since the sea is a rich repository of natural resources that is taken notice in the world. In particular, the marine environment data should be collected continuously in order to understand and analyze the marine environment, however the marine environment monitoring is limited in many area yet. The prediction of marine disaster by automatic collecting marine environment data and analyzing the collected data can contribute to minimized the damages with respect to marine pollution of oil spill and fisheries damage by red tide blooms and marine environment upsets. In this paper, we proposed the marine environment monitoring and analysis system model. The proposed system automatically collects the marine environment information for monitoring the marine environment intelligently. Also it predicts the marine disaster by analyzing the collected ocean data.

Examination of Bioconcentration of a New Algicide, Thiazolidinedione Derivative (TD49) to Marine Organisms (신규 살조제 Thiazolidinedione 유도체 (TD49)의 해양생물에 대한 생물 농축도 조사)

  • Shin, Jun-Jae;Kim, Si-Wouk;Cho, Hoon;Kim, Seong-Jun
    • KSBB Journal
    • /
    • v.27 no.2
    • /
    • pp.91-96
    • /
    • 2012
  • In this study, a newly synthesized thiazolidinedione derivative, TD49 with a highly selective algicide to red tide, was examined in order to evaluate the bioconcentration on aquatic organisms of coast. BAF (accumulation of TD49 by aquatic food chain) and BCF (accumulation of TD49 by sea water) were examined employing the shrimp (Fenneropenaeus chinensis) as the feed organism, and the olive flounder Paralichthys olivaceus as a consumer in marine ecosystem. Bioconcentration degree in sea water showed that the order in P. olivaceus was viscera > gill > muscle. The average BCF values of TD49 were 67.70, 63.32 and 20.25 at viscera, gill and muscle, respectively. Bioaccumulation degree using feed showed that the order in the organs of P. olivaceus was viscera > gill > muscle. The average BAF values of TD49 were 175.89, 114.88 and 32.59 at viscera, gill and muscle, respectively. When compared with two results, the accumulation by the food and water was higher than that by water. After the elimination experiment in sea water, the TD49 concentration was 2.81 nmole/g in the viscera and were not found in the gill and the muscle. More than 50% of the accumulated TD49 were eliminated from viscera in 7 days and all the accumulated TD49 were eliminated from gill and muscle in 7 days. On the other hand, the octanol/water partition coefficient (log $K_{ow}$) was measured to be 3.66 and experimental BCF of this study was 67.7.

Ingestion of the unicellular cyanobacterium Synechococcus by the mixotrophic red tide ciliate Mesodinium rubrum

  • Yoo, Yeong Du;Seong, Kyeong Ah;Myung, Geumog;Kim, Hyung Seop;Jeong, Hae Jin;Palenik, Brian;Yih, Wonho
    • ALGAE
    • /
    • v.30 no.4
    • /
    • pp.281-290
    • /
    • 2015
  • We explored phagotrophy of the phototrophic ciliate Mesodinium rubrum on the cyanobacterium Synechococcus. The ingestion and clearance rates of M. rubrum on Synechococcus as a function of prey concentration were measured. In addition, we calculated grazing coefficients by combining the field data on abundance of M. rubrum and co-occurring Synechococcus spp. with laboratory data on ingestion rates. The ingestion rate of M. rubrum on Synechococcus sp. linearly increased with increasing prey concentrations up to approximately 1.9 × 106 cells mL-1, to exhibit sigmoidal saturation at higher concentrations. The maximum ingestion and clearance rates of M. rubrum on Synechococcus were 2.1 cells predator-1 h-1 and 4.2 nL predator-1 h-1, respectively. The calculated grazing coefficients attributable to M. rubrum on cooccurring Synechococcus spp. reached 0.04 day-1. M. rubrum could thus sometimes be an effective protistan grazer of Synechococcus in marine planktonic food webs. M. rubrum might also be able to form recurrent and massive blooms in diverse marine environments supported by the unique and complex mixotrophic arrays including phagotrphy on hetrotrophic bacteria and Synechococcus as well as digestion, kleptoplastidy and karyoklepty after the ingestion of cryptophyte prey.

On the Trophic Correlation between Tintinnids and Dinoflagellates in Masan Bay, Korea (마산만의 유종섬모충류와 와편모류간의 포식-피포식 상관관계에 대하여)

  • YOO Kwang-Il;LEE Joon-Baek
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.3
    • /
    • pp.230-236
    • /
    • 1987
  • The correlation between tintinnid and dinoflagellate by means of seasonal variation of standing crops was investigated at two selected stations in Masan Bay, well-known as a red tide zone in southern coastal waters of Korea, during the period from January 1981 to December 1982. The most dominant dinoflagellates mainly belonged to $20-60\;{\mu}m$ of size class, and Gymnodinium and Prorocentrum were predominant from spring to summer season. Of tintinnid, Favella spp. were most dominant and associated with dinoflagellate blooms at the same season. Especially, Favella spp. were most positively correlated with $40-60\;{\mu}m$ size class of dinoflagellate, and also represented higher multiple corrleation with outer station (St.2), comprising relatively large species of Gymonodinium and Protogonyaulax, than with inner station (St. 1), dominated by Prorocentrum blooms. Thus, the interspecific food selection by size and morphology between tintinnid including Favella and dinoflagellate is recognized and it is considered to be an important factor influenecing on the prey-predator relationship in lower trophic level in the surveyed area.

  • PDF

Biotechnological Potential of Korean Marine Microalgal Strains and Its Future Prospectives

  • Hong, Ji Won;Kang, Nam Seon;Jang, Hyeong Seok;Kim, Hyung June;An, Yong Rock;Yoon, Moongeun;Kim, Hyung Seop
    • Ocean and Polar Research
    • /
    • v.41 no.4
    • /
    • pp.289-309
    • /
    • 2019
  • Marine microalgae have long been used as food additives and feeds for juvenile fish and invertebrates as their nutritional content is beneficial for humans and marine aquaculture species. Recently, they have also been recognized as a promising source for cosmeceutical, nutraceutical, and pharmaceutical products as well as biofuels. Marine microalgae of various species are rich in multiple anti-oxidant phytochemicals and their bioactive components have been employed in cosmetics and dietary supplements. Oil contents in certain groups of marine microalgae are extraordinarily rich and abundant and therefore have been commercialized as omega-3 and omega-6 fatty acid supplements and mass production of microalgae-based biodiesels has been demonstrated by diverse research groups. Numerous natural products from marine microalgae with significant biological activities are reported yearly and this is attributed to their unique adaptive abilities to the great diversity of marine habitats and harsh conditions of marine environments. Previously unknown toxin compounds from red tide-forming dinoflagellates have also been identified which opens up potential applications in the blue biotechnology sector. This review paper provides a brief overview of the biotechnological potentials of Korean marine microalgae. We hope that this review will provide guidance for future marine biotechnology R&D strategies and the various marine microalgae-based industries in Korea.

Feeding by the newly described heterotrophic dinoflagellate Aduncodinium glandula: having the most diverse prey species in the family Pfiesteriaceae

  • Jang, Se Hyeon;Jeong, Hae Jin;Lim, An Suk;Kwon, Ji Eun;Kang, Nam Seon
    • ALGAE
    • /
    • v.31 no.1
    • /
    • pp.17-31
    • /
    • 2016
  • To explore the feeding ecology of the newly described heterotrophic dinoflagellate Aduncodinium glandula in the family Pfiesteriaceae, its feeding behavior and prey species were investigated. Additionally, the growth and ingestion rates of A. glandula on the mixotrophic dinoflagellates Heterocapsa triquetra and Akashiwo sanguinea, its optimal and suboptimal prey, respectively were measured. A. glandula fed on prey through a peduncle after anchoring to the prey using a tow filament. A. glandula ate all algal prey and perch blood cells tested and had the most diverse prey species in the family Pfiesteriaceae. Unlike for other pfiesteriacean species, H. triquetra and A. sanguinea support the positive growth of A. glandula. However, the cryptophytes Rhodomonas salina and Teleaulax sp. and the phototrophic dinoflagellate Amphidinium carterae did not support the positive growth of A. glandula. Thus, A. glandula may have a unique kind of prey and its optimal prey differs from that of the other pfiesteriacean dinoflagellates. With increasing mean prey concentration, the growth rates of A. glandula on H. triquetra and A. sanguinea increased rapidly and then slowed or became saturated. The maximum growth rates when feeding on H. triquetra and A. sanguinea were 1.004 and 0.567 d−1, respectively. Further, the maximum ingestion rates of A. glandula on H. triquetra and A. sanguinea were 0.75 and 1.38 ng C predator−1 d−1, respectively. There is no other pfiesteriacean species having H. triquetra and A. sanguinea as optimal and suboptimal prey. Thus, A. glandula may be abundant during blooms dominated by these species not preferred by the other pfiesteriacean dinoflagellates.

Oceanographic Tasks and International Coorperations for the Utilization and Disaster Prevention of the Yellow Sea (황해의 리용과 재난방지를 위한 해양학적 과제와 국제협력)

  • OHIMSANG
    • 한국해양학회지
    • /
    • v.28 no.4
    • /
    • pp.339-346
    • /
    • 1993
  • Due to the natural increase of human population and the concentration of industrial complexes to coastal area, the uses of nearshore area were increased drastically, and the tendency will not stop for a while. Therefore, the loss of human life and property damages of the present days for a disaster of the same magnitude should be heavy as compared to those of the past. For the better utilization of the sea and the prevention of the frequent marine natural and man-made disaster, and for the preparedness for the ocean pollutions, through ocean researches are required. the circulation, tidal currents, storm surges, sea surface wind, waves and sea fogs of the Yellow Sea should be investigated first from the oceanographic point of view, and then the dispersion and diffusion of spilled oil and pollutants, beach erosion, red tide, and longterm sea level oscillations can be studied. International cooperation is crucial for the investigation of the sea because of the temporal and geographic scales of the oceanic phenomina.

  • PDF