Browse > Article
http://dx.doi.org/10.4490/algae.2015.30.4.281

Ingestion of the unicellular cyanobacterium Synechococcus by the mixotrophic red tide ciliate Mesodinium rubrum  

Yoo, Yeong Du (Department of Marine Biotechnology, College of Ocean Science and Technology, Kunsan National University)
Seong, Kyeong Ah (Converging Research Division, National Marine Biodiversity Institute of Korea)
Myung, Geumog (Department of Marine Biotechnology, College of Ocean Science and Technology, Kunsan National University)
Kim, Hyung Seop (Department of Marine Biotechnology, College of Ocean Science and Technology, Kunsan National University)
Jeong, Hae Jin (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
Palenik, Brian (Marine Biology Research Division, Scripps Institution of Oceanography, University of California at San Diego)
Yih, Wonho (Department of Marine Biotechnology, College of Ocean Science and Technology, Kunsan National University)
Publication Information
ALGAE / v.30, no.4, 2015 , pp. 281-290 More about this Journal
Abstract
We explored phagotrophy of the phototrophic ciliate Mesodinium rubrum on the cyanobacterium Synechococcus. The ingestion and clearance rates of M. rubrum on Synechococcus as a function of prey concentration were measured. In addition, we calculated grazing coefficients by combining the field data on abundance of M. rubrum and co-occurring Synechococcus spp. with laboratory data on ingestion rates. The ingestion rate of M. rubrum on Synechococcus sp. linearly increased with increasing prey concentrations up to approximately 1.9 × 106 cells mL-1, to exhibit sigmoidal saturation at higher concentrations. The maximum ingestion and clearance rates of M. rubrum on Synechococcus were 2.1 cells predator-1 h-1 and 4.2 nL predator-1 h-1, respectively. The calculated grazing coefficients attributable to M. rubrum on cooccurring Synechococcus spp. reached 0.04 day-1. M. rubrum could thus sometimes be an effective protistan grazer of Synechococcus in marine planktonic food webs. M. rubrum might also be able to form recurrent and massive blooms in diverse marine environments supported by the unique and complex mixotrophic arrays including phagotrphy on hetrotrophic bacteria and Synechococcus as well as digestion, kleptoplastidy and karyoklepty after the ingestion of cryptophyte prey.
Keywords
grazing impact; ingestion; Mesodinium; mixotrophy; Synechococcus;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Crawford, D. W. 1989. Mesodinium rubrum: the phytoplankter that wasn’t. Mar. Ecol. Prog. Ser. 58:161-174.   DOI
2 Christaki, U., Jacquet, S., Dolan, J. R., Vaulot, D. & Rassoulzadegan, F. 1999. Growth and grazing on Prochlorococcus and Synechococcus by two marine ciliates. Limnol. Oceanogr. 144:52-61.
3 Christaki, U., Courties, C., Karayanni, H., Giannakourou, A., Maravelias, C., Kormas, K. A. & Lebaron, P. 2002. Dynamic characteristics of Prochlorococcus and Synechococcus consumption by bacterivorous nanoflagellates. Microb. Ecol. 43:341-352.   DOI
4 Burkill, P. H., Leakey, R. J. G., Owens, N. J. P. & Mantoura, R. F. C. 1993. Synechococcus and its importance to the microbial foodweb of the northwestern Indian Ocean. Deep Sea Res. II Top. Stud. Oceanogr. 40:773-782.   DOI
5 Boenigk, J., Matz, C., Jürgens, K. & Arndt, H. 2001. The influence of preculture conditions and food quality on the ingestion and digestion process of three species of heterotrophic nanoflagellates. Microb. Ecol. 42:168-176.
6 Berge, T., Hansen, P. J. & Moestrup, Ø. 2008. Feeding mechanism, prey specificity and growth in light and dark of the plastidic dinoflagellate Karlodinium armiger. Aquat. Microb. Ecol. 50:279-288.   DOI
7 Liu, H., Dagg, M. J. & Strom, S. 2005. Grazing by the calanoid copepod Neocalanus cristatus on the microbial food web in the coastal Gulf of Alaska. J. Plankton Res. 27:647-662.   DOI
8 Lindholm, T. 1985. Mesodinium rubrum: a unique photosynthetic ciliate. Adv. Aquat. Microbiol. 3:1-48.
9 Lignell, R., Seppälä, J., Kuuppo, P., Tammimen, T., Andersen, T. & Gismervik, I. 2003. Beyond bulk properties: responses of coastal summer plankton communities to nutrient enrichment in the northern Baltic Sea. Limnol. Oceanogr. 48:189-209.   DOI
10 Reguera, B., Velo-Suárez, L., Raine, R. & Park, M. G. 2012. Harmful Dinophysis species: a review. Harmful Algae 14:87-106.   DOI
11 Powell, L. M., Bowman, J. P., Skerratt, J. H., Franzmann, P. D. & Burton, H. R. 2005. Ecology of a novel Synechococcus clade occurring in dense populations in saline Antarctic lakes. Mar. Ecol. Prog. Ser. 291:65-80.   DOI
12 Phlips, E. J., Zeman, C. & Hansen, P. 1989. Growth, photosynthesis, nitrogen fixation and carbohydrate production by a unicellular cyanobacterium, Synechococcus sp. (Cyanophyta). J. Appl. Phycol. 1:137-145.   DOI
13 Park, M. G., Kim, S., Kim, H. S., Myung, G., Kang, Y. G. & Yih, W. 2006. First successful culture of the marine dinoflagellate Dinophysis acuminata. Aquat. Microb. Ecol. 45:101-106.   DOI
14 Park, J. S., Myung, G., Kim, H. S., Cho, B. C., Yih, W. 2007. Growth responses of the marine photosynthetic ciliate Myrionecta rubra to different cryptomonad strains. Aquat. Microb. Ecol. 48:83-90.   DOI
15 Ong, L. J. & Glazer, A. N. 1991. Phycoerythrins of marine unicellular cyanobacteria. I. Bilin types and locations and energy transfer pathways in Synechococcus spp. phycoerythrins. J. Biol. Chem. 266:9515-9527.
16 Guillard, R. R. L. & Ryther, J. H. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Grun. Can. J. Microbiol. 8:229-239.   DOI
17 Apple, J. K., Strom, S. L., Palenik, B. & Brahamsha, B. 2011. Variability in protist grazing and growth on different marine Synechococcus isolates. Appl. Environ. Microbiol. 77:3074-3084.   DOI
18 Hansen, P. J., Bjørnsen, P. K. & Hansen, B. W. 1997. Zooplankton grazing and growth: scaling within the 2-2,000-μm body size range. Limnol. Oceanogr. 42:687-704.   DOI
19 Guillou, L., Jacquet, S., Chrétiennot-Dinet, M. -J. & Vaulot, D. 2001. Grazing impact of two small heterotrophic flagellates on Prochlorococcus and Synechococcus. Aquat. Microb. Ecol. 26:201-207.   DOI
20 Glover, H. E., Campbell, L. & Prézelin, B. B. 1986. Contribution of Synechococcus spp. to size-fractioned primary productivity in three water masses in the Northwest Atlantic Ocean. Mar. Biol. 91:193-203.   DOI
21 Glibert, P. M., Heil, C. A., Hollander, D. J., Revilla, M., Hoare, A., Alexander, J. & Murasko, S. 1972. Evidence for dissolved organic nitrogen and phosphorus uptake during a cyanobacterial bloom in Florida Bay. Mar. Ecol. Prog. Ser. 280:73-83.
22 Frost, B. W. 1972. Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnol. Oceanogr. 17:805-815.   DOI
23 Ferris, M. J. & Palenik, B. 1998. Niche adaptation in ocean cyanobacteria. Nature 396:226-228.   DOI
24 Fenchel, T. & Hansen, P. J. 2006. Motile behaviour of the bloom-forming ciliate Mesodinium rubrum. Mar. Biol. Res. 2:33-40.   DOI
25 Yih, W., Kim, H. S., Myung, G., Park, J. W., Yoo, Y. D. & Jeong, H. J. 2013. The red-tide ciliate Mesodinium rubrum in Korean coastal waters. Harmful Algae 30(Suppl. 1):S53-S61.   DOI
26 Nam, S. W., Shin, W., Coats, D. W., Park, J. W. & Yih, W. 2012. Ultrastructure of the oral apparatus of Mesodinium rubrum from Korea. J. Eukaryot. Microbiol. 59:625-636.   DOI
27 Myung, G., Yih, W., Kim, H. S., Park, J. S. & Cho, B. C. 2006. Ingestion of bacterial cells by the marine photosynthetic ciliate Myrionecta rubra. Aquat. Microb. Ecol. 44:175-180.   DOI
28 Myung, G., Kim, H. S., Park, J. W., Park, J. S. & Yih, W. 2013. Sequestered plastids in Mesodinium rubrum are functionally active up to 80 days of phototrophic growth without cryptomonad prey. Harmful Algae 27:82-87.   DOI
29 Yih, W., Kim, H. S., Myung, G. & Kim, Y. G. 2004b. Rapid feeding on live organisms of the phototrophic ciliate Mesodinium rubrum by Farrer's Scallop Chlamys farreri. J. Mar. Biotechnol. 6:142-145.
30 Yih, W., Kim, H. S., Jeong, H. J., Myung, G. & Kim, Y. G. 2004a. Ingestion of cryptophyte cells by the marine photosynthetic ciliate Mesodinium rubrum. Aquat. Microb. Ecol. 36:165-170.   DOI
31 Waterbury, J. B., Watson, S. W., Guillard, R. R. L. & Brand, L. E. 1979. Widespread occurrence of a unicellular, marine, planktonic cyanobacterium. Nature 277:293-294.   DOI
32 Walker, T. D. & Marchant, H. J. 1989. The seasonal occurrence of chroococcoid cyanobacteria at an Antarctic coastal site. Polar Biol. 9:193-196.   DOI
33 Taylor, F. J. R., Blackbourn, D. J. & Blackbourn, J. 1971. The red-water ciliate Mesodinium rubrum and its “incomplete symbionts”: a review including new ultrastructural observations. J. Fish. Res. Board Can. 28:391-407.   DOI
34 Jeong, H. J., Park, J. Y., Nho, J. H., Park, M. O., Ha, J. H., Seong, K. A., Jeng, C., Seong, C. N., Lee, K. Y. & Yih, W. H. 2005. Feeding by the red-tide dinoflagellates on the cyanobacterium Synechococcus. Aquat. Microb. Ecol. 41:131-143.   DOI
35 Dolan, J. R. & Šimek, K. 1998. Ingestion and digestion of an autotrophic picoplankter, Synechococcus, by a heterotrophic nanoflagellate, Bodo saltans. Limnol. Oceanogr. 43:1740-1746.   DOI
36 Jeong, H. J., Shim, J. H., Kim, J. S., Park, J. Y., Lee, C. W. & Lee, Y. 1999. Feeding by the mixotrophic thecate dinoflagellate Fragilidium cf. mexicanum on red-tide and toxic dinoflagellates. Mar. Ecol. Prog. Ser. 176:263-277.   DOI
37 Jeong, H. J., Seong, K. A., Kang, N. S., Yoo, Y. D., Nam, S. W., Park, J. Y., Shin, W., Glibert, P. M. & Johns, D. 2010. Feeding by raphidophytes on the cyanobacterium Synechococcus sp. Aquat. Microb. Ecol. 58:181-195.   DOI
38 Huang, S., Wilhelm, S. W., Harvey, H. R., Taylor, K., Jiao, N. & Chen, F. 2012. Novel lineages of Prochlorococcus and Synechococcus in the global oceans. ISME J. 6:285-297.   DOI
39 Herfort, L., Peterson, T. D., McCue, L. A., Crump, B. C., Prahl, F. G., Baptista, A. M., Campbell, V., Warnick, R., Selby, M., Roegner, G. C. & Zuber, P. 2011. Myrionecta rubra population genetic diversity and its cryptophyte chloroplast specificity in recurrent red tides in the Columbia River estuary. Aquat. Microb. Ecol. 62:85-97.   DOI
40 Heinbokel, J. F. 1978. Studies on the functional role of tintinnids in the Southern California Bight. I. Grazing and growth rates in laboratory cultures. Mar. Biol. 47:177-189.   DOI
41 Li, W. K. W. 1994. Primary production of prochlorophytes, cyanobacteria, and eukaryotic ultraphytoplankton: measurements from flow cytometric sorting. Limnol. Oceanogr. 39:169-175.   DOI
42 Sullivan, L. J. & Gifford, D. J. 2004. Diet of the larval ctenophore Mnemiopsis leidyi A. Agassiz (Ctenophora, Lobata). J. Plankton Res. 26:417-431.   DOI
43 Strom, S. L., Brahamsha, B., Fredrickson, K. A., Apple, J. K. & Rodríguez, A. G. 2012. A giant cell surface protein in Synechococcus WH8102 inhibits feeding by a dinoflagellate predator. Environ. Microbiol. 14:807-816.   DOI
44 Sherr, B. F., Sherr, E. B. & Fallon, R. D. 1987. Use of monodispersed, fluorescently labeled bacteria to estimate in situ protozoan bacterivory. Appl. Environ. Microbiol. 53:958-965.
45 Hansen, P. J., Nielsen, L. T., Johnson, M., Berge, T. & Fylnn, K. J. 2013. Acquired phototrophy in Mesodinium and Dinophysis: a review of cellular organization, prey selectivity, nutrient uptake and bioenergetics. Harmful Algae 28:126-139.   DOI
46 Hansen, P. J., Moldrup, M., Tarangkoon, W., Garcia-Cuetos, L. & Moestrup, Ø. 2012. Direct evidence for symbiont sequestration in the marine red tide ciliate Mesodinium rubrum. Aquat. Microb. Ecol. 66:63-75.   DOI
47 Lee, K. H., Jeong, H. J., Yoon, E. Y., Jang, S. H., Kim, H. S. & Yih, W. 2014. Feeding by common heterotrophic dinoflagellates and a ciliate on the red-tide ciliate Mesodinium rubrum. Algae 29:153-163.   DOI
48 Landry, M. R., Kirshtein, J. & Constantinou, J. 1996. Abundances and distributions of picoplankton populations in the Central Equatorial Pacific from 12°N to 12°S, 140°W. Deep Sea Res. Part II Top. Stud. Oceanogr. 43:871-890.   DOI
49 Johnson, P. W. & Sieburth, J. M. 1979. Chroococcoid cyanobacteria in the sea: a ubiquitous and diverse phototrophic biomass. Limnol. Oceanogr. 24:928-935.   DOI
50 Johnson, M. D. & Stoecker, D. K. 2005. Role of feeding in growth and photophysiology of Myrionecta rubra. Aquat. Microb. Ecol. 39:303-312.   DOI
51 Johnson, M. D., Oldach, D., Delwiche, C. F. & Stoecker, D. K. 2007. Retention of transcriptionally active cryptophyte nuclei by the ciliate Myrionecta rubra. Nature 445:426-428.   DOI
52 Murrell, M. C. & Lores, E. M. 2004. Phytoplankton and zooplankton seasonal dynamics in a subtropical estuary: importance of cyanobacteria. J. Plankton Res. 26:371-382.   DOI
53 Jeong, H. J., Yoo, Y. D., Lee, K. H., Kim, T. H., Seong, K. A., Kang, N. S., Lee, S. Y., Kim, J. S., Kim, S. & Yih, W. 2013. Red tides in Masan Bay, Korea in 2004-2005. I. Daily variations in the abundance of red-tide organisms and environmental factors. Harmful Algae 30(Suppl. 1):S75-S88.   DOI
54 Jeong, H. J., Yoo, Y. D., Kang, N. S., Lim, A. S., Seong, K. A., Lee, S. Y., Lee, M. J., Lee, K. H., Kim, H. S., Shin, W., Nam, S. W., Yih, W. & Lee, K. 2012. Heterotrophic feeding as a newly identified survival strategy of the dinoflagellate Symbiodinium. Proc. Natl. Acad. Sci. U. S. A. 109:12604-12609.   DOI
55 Myung, G., Kim, H. S., Park, J. S., Park, M. G. & Yih, W. 2011. Population growth and plastid type of Myrionecta rubra depend on the kinds of available cryptomonad prey. Harmful Algae 10:536-541.   DOI
56 Menden-Deuer, S. & Lessard, E. J. 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45:569-579.   DOI
57 Marañón, E., Behrenfeld, M. J., González, N., Mouriño, B. & Zubkov, M. V. 2003. High variability of primary production in oligotrophic waters of the Atlantic Ocean: uncoupling from phytoplankton biomass and size structure. Mar. Ecol. Prog. Ser. 257:1-11.   DOI
58 Liu, M., Xiao, T., Sun, J., Wei, H., Wu, Y., Zhao, Y. & Zhang, W. 2013. Bacterial community structures associated with a natural spring phytoplankton bloom in the Yellow Sea, China. Deep Sea Res. Part II Top. Stud. Oceanogr. 97:85-92.   DOI