• 제목/요약/키워드: Rectifier Circuit

검색결과 442건 처리시간 0.024초

PSCAD/EMTDC를 이용한 저전압 직류 배전 시스템의 단락 고장 전류 분석 (Analysis on the Short Circuit Current of a Low Voltage Direct Current(DC) Distribution System using PSCAD/EMTDC)

  • 안재민;전정채;임용배;배석명;변길성;이경호
    • 전기학회논문지P
    • /
    • 제59권4호
    • /
    • pp.473-476
    • /
    • 2010
  • In this paper, we analyzed the short circuit current of a low voltage direct current distribution system. For the analysis, we performed the modeling of the low voltage direct current distribution system with a 6-pulse three-phase thyristor rectifier using the PSCAD/EMTDC, surveyed impedance of sources, transformers and distribution lines to run a simulation. A result of the simulation is that short circuit currents of the direct current distribution system with the rectifier decreased due to a thyristor-ON-resistance(Ron). But in case of the low thyristor-ON resistance, output fault current of the rectifier increased over three-phase short circuit current of an AC power system without a rectifier by regular ratio of the rectifier. Because the output fault current of the rectifier can increase over interrupting the capacity of circuit breakers, studying short circuit currents of a low voltage direct current distribution system with a rectifier is necessary for introducing the direct current distribution systems.

Analysis, Design, and Implementation of a High-Performance Rectifier

  • Wang, Chien-Ming;Tao, Chin-Wang;Lai, Yu-Hao
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.905-914
    • /
    • 2016
  • A high-performance rectifier is introduced in this study. The proposed rectifier combines the conventional pulse width modulation, soft commutation, and instantaneously average line current control techniques to promote circuit performance. The voltage stresses of the main switches in the rectifier are lower than those in conventional rectifier topologies. Moreover, conduction losses of switches in the rectifier are certainly lower than those in conventional rectifier topologies because the power current flow path when the main switches are turned on includes two main power semiconductors and the power current flow path when the main switches are turned off includes one main power semiconductor. The rectifier also adopts a ZCS-PWM auxiliary circuit to derive the ZCS function for power semiconductors. Thus, the problem of switching losses and EMI can be improved. In the control strategy, the controller uses the average current control mode to achieve fixed-frequency current control with stability and low distortion. A prototype has been implemented in the laboratory to verify circuit theory.

순환전류 감소를 위한 새로운 정류회로를 갖는 위상천이 풀브리지 컨버터 (A Phase-Shifted Full-Bridge Converter With a New Rectifier Circuit for Reducing Circuiting Current)

  • 최병기;이우석;이일운
    • 전력전자학회논문지
    • /
    • 제26권3호
    • /
    • pp.237-240
    • /
    • 2021
  • This research proposes a new rectifier circuit to reduce the circulating current of a phase-shifted full bridge converter. The proposed circuit is a structure in which the output inductor of the secondary rectifier circuit is changed to a coupled inductor in the phase-shifted full bridge with the existing center-tapped rectifier. The parts are rearranged after adding a diode. After applying the proposed circuit, the circulating current to the primary current of the transformer and the voltage stress of the rectifier diode on the secondary side of the transformer are reduced. Accordingly, the snubber loss of the rectifier is improved. By reducing the circulating current and snubber loss, the circuit achieves higher efficiency than conventional circuits. In this research, we present the structure of the proposed circuit, its strengths, and the analysis results from experiments. Furthermore, its effectiveness is verified through the experimental results of a prototype converter with an input of 300-400 V and an output of 50 V/1 kW.

LLC 공진형 하프브릿지 컨버터의 동기정류기 구동회로에 관한 연구 (A Study on the Synchronous Rectifier Driver Circuits in the LLC Resonant Half-Bridge Converter)

  • 안태영;임범선
    • 조명전기설비학회논문지
    • /
    • 제30권1호
    • /
    • pp.79-86
    • /
    • 2016
  • In this paper, we propose a current-driven synchronous rectifier driver circuit for LLC resonant half-bridge converters. The proposed driver circuit detects a relatively low current in the primary side of the transformer although a large current is flowing in the secondary side. Due to this feature, the driver circuit has a simple circuit structure and stabilizes the switching operation with a logic-level switching voltages for the synchronous rectifier. The operation and performance of the proposed driver circuit are confirmed with a prototype of 1kW class LLC resonant half-bridge converter. The experimental results proved that the proposed synchronous rectifier driver method improves the power conversion efficiency by around 1% and reduces the internal power loss by 17W.

디스플레이용 스위칭모드 전원장치의 단락 고장분석 검출기법 (Techniques to Diagnose Short-Circuit Faults in the Switching Mode Power Supply for Display)

  • 이재원;전태원
    • 전기학회논문지
    • /
    • 제65권7호
    • /
    • pp.1186-1192
    • /
    • 2016
  • This paper proposes techniques to diagnose short-circuit faults of both the diodes and power FET in switching mode power supply (SMPS) by using a simple analog tester. The diodes in full-bridge rectifier, power FET, switching transformer, and some sensors are modelled with resistor. The total resistance value measured at the input terminal of a SMPS is analyzed when the short-circuit faults of diodes in a full bridge rectifier or power FET are occurred. The short-circuit faults of one or two diodes in a full bridge rectifier, power FET, and both the diodes in a full bridge rectifier and power FET can be detected by a range of total resistance, which is measured by the analog tester. Through experiments, the theoretical analysis for total resistance under short-circuit faults can be verified.

DC voltage control by drive signal pulse-width control of full-bridged inverter

  • Ishikawa, Junichi;Suzuki, Taiju;Ikeda, Hiroaki;Mizutani, Yoko;Yoshida, Hirofumi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.255-258
    • /
    • 1996
  • This paper describes a DC voltage controller for the DC power supply which is constructed using the full-bridged MOS-FET DC-to-RF power inverter and rectifier. The full-bridged MOS-FET DC-to-RF inverter consisting of four MOSFET arrays and an output power transformer has a control function which is able to control the RF output power when the widths of the pulse voltages which are fed to four MOS-FET arrays of the fall-bridged inverter are changed using the pulse width control circuit. The power conversion efficiency of the full-bridged MOS-FET DC-to-RF power inverter was approximately 85 % when the duty cycles of the pulse voltages were changed from 30 % to 50 %. The RF output voltage from the full-bridged MOS-FET DC-to-RF inverter is fed to the rectifier circuit through the output transformer. The rectifier circuit consists of GaAs schottky diodes and filters, each of which is made of a coil and capacitors. The power conversion efficiency of the rectifier circuit was over 80 % when the duty cycles of the pulse voltages were changed from 30 % to 50 %. The output voltage of the rectifier circuit was changed from 34.7V to 37.6 V when the duty cycles of the pulse voltages were changed from 30 % to 50 %.

  • PDF

An Alternative Zero Voltage Switching Method of Boost Rectifier in Power Factor Correction Rectifier/Regulator System using DC Linked Energy Feedback Circuit

  • Roh, Chung-Wook;Kim, Bok-Man;Moon, Gun-Woo;Youn, Myung-Joong
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.270-275
    • /
    • 1998
  • A new single phase power factor correction rectifier/regulator with dc linked energy feedback circuit is proposed, which is capable of achieving the zero voltage switching (ZVS) of a boost rectifier stage without any auxiliary switch. The performance of the proposed rectifier/regulator is demonstrated through a 200W, 90 KHz prototype. This proposed rectifier/regulator with dc linked energy feedback circuit is particularly suited for distributed power system applications

  • PDF

와류를 이용한 압전 에너지 수확 회로의 전력 분석 (Electrical power analysis of piezoelectric energy harvesting circuit using vortex current)

  • 박건민;이종현;조치영
    • 한국음향학회지
    • /
    • 제38권2호
    • /
    • pp.222-230
    • /
    • 2019
  • 본 논문에서는 유체의 와류 현상을 이용한 에너지 하베스팅 회로의 전력을 분석하였다. 와류를 전기 에너지로 바꾸기 위한 소자로 PVDF(Polyvinylidene fluoride) 압전 센서를 사용하였으며, 전력 분석을 위해 잘 알려진 브리지 다이오드 정류 회로와 전력 변환 효율을 향상시키기 위해 다이오드 정류회로 입력단에 병렬 동기 스위치 회로를 접목한 P-SSHI(Parallel Synchronized Switch Harvesting on Inductor) 정류 회로를 사용하였다. 다이오드 및 P-SSHI 정류 회로의 출력 전력은 이론을 통해 분석하였고 실험을 통해 검증하였다. 공기에 의한 와류를 이용한 실험을 통해 P-SSHI 정류 회로의 전력효율이 69 % 증가됨을 확인하였다. 또한 수확된 와류 에너지를 슈퍼 커패시터에 저장하는 회로를 구현하여 2차 전지로써 활용이 가능함을 확인하였다.

동기정류기 강제구동 방식을 이용한 TTFC의 효율 향상에 관한 연구 (A Study on the Efficiency Improvement of TTFC(Two Transistor Forward Converter) using Synchronous Rectifier of Compulsory Control-driver)

  • 배진용;김용;이은영;권순도;한경태;한대희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.166-170
    • /
    • 2003
  • This paper presents the TTFC(Two Transistor Forward Converter) using Synchronous Rectifier of Compulsory Control-driver. The two transistor forward circuit is used to decrease voltage stress of primary side and the synchronous rectifier is used to reduce current stress of secondary side. Previous synchronous rectifier's MOSFET of TTFC have long dead time This paper presents synchronous rectifier of compulsory control-driver for minimized dead time. This paper compared with diode rectifier, self-driven synchronous rectifier and compulsory control-driver synchronous rectifier of TTFC. The principle of operation, feature and design considerations are illustrated and verified through the experiment with a 200W 100kHz MOSFET based experimental circuit.

  • PDF

Modeling and Analysis of Cascade Multilevel PWM Rectifier Using Circuit DQ Transformation

  • Park, Nam-Sup
    • Journal of information and communication convergence engineering
    • /
    • 제1권3호
    • /
    • pp.163-168
    • /
    • 2003
  • This paper presents a cascade multilevel PWM rectifier without the isolation transformers for energy build-up at each inverter modules. The features and advantages of the proposed PWM rectifier can be summarized as follows; I) It realizes the high power high voltage AC/DC power conversion, 2) It uses no transformer which is bulky and heavy, 3) It has hybrid structure so that switching devices can be effectively utilized, 4) It produces high quality AC current even in high power high voltage applications, 5) The input power factor remains unity by simple modulation index control. The multilevel rectifier is analyzed by using the circuit DQ transformation whereby the characteristics and control equations are obtained. Finally, it will be shown that the system simulation reveals the validity of analyses.