• Title/Summary/Keyword: Rectangular Decomposition

Search Result 48, Processing Time 0.02 seconds

A Study of Spectral Domain Electromagnetic Scattering Analysis Applying Wavelet Transform (웨이블릿을 이용한 파수영역 전자파 산란 해석법 연구)

  • 빈영부;주세훈;이정흠;김형동
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.3
    • /
    • pp.337-344
    • /
    • 2000
  • The wavelet analysis technique is applied in the spectral domain to efficiently represent the multi-scale features of the impedance matrices. In this scheme, the 2-D quadtree decomposition (applying the wavelet transform to only the part of the matrix) method often used in image processing area is applied for a sparse moment matrix. CG(Conjugate-Gradient) method is also applied for saving memory and computation time of wavelet transformed moment matrix. Numerical examples show that for rectangular cylinder case the non-zero elements of the transformed moment matrix grows only as O($N^{1.6}$).

  • PDF

THE PERIODIC JACOBI MATRIX PROCRUSTES PROBLEM

  • Li, Jiao-Fen;Hu, Xi-Yan
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.569-582
    • /
    • 2010
  • The following "Periodic Jacobi Procrustes" problem is studied: find the Periodic Jacobi matrix X which minimizes the Frobenius (or Euclidean) norm of AX - B, with A and B as given rectangular matrices. The class of Procrustes problems has many application in the biological, physical and social sciences just as in the investigation of elastic structures. The different problems are obtained varying the structure of the matrices belonging to the feasible set. Higham has solved the orthogonal, the symmetric and the positive definite cases. Andersson and Elfving have studied the symmetric positive semidefinite case and the (symmetric) elementwise nonnegative case. In this contribution, we extend and develop these research, however, in a relatively simple way. Numerical difficulties are discussed and illustrated by examples.

Mismatching Problem between Generic Pole-assignabilities by Static Output Feedback and Dynamic Output Feedback in Linear Systems

  • Kim Su-Wood
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.1
    • /
    • pp.56-69
    • /
    • 2005
  • In this paper, it is clearly shown that the two well-known necessary and sufficient conditions mp n as generic static output feedback pole-assignment and mp + d(m+p) n+d as generic minimum d-th order dynamic output feedback pole-assignment on complex field, unbelievably, do not match up each other in strictly proper linear systems. For the analysis, a diagram analysis is newly created (which is defined by the analysis of 'convoluted rectangular/dot diagrams' constructed via node-branch conversion of the signal flow graphs of output feedback gain loops). Under this diagram analysis, it is proved that the minimum d-th order dynamic output feedback compensator for pole-assignment in m-input, p-output, n-th order systems is quantitatively decomposed into static output feedback compensator and its associated d number of arbitrary 1st order dynamic elements in augmented (m+d)-input, (p+d)-output, (n+d)-th order systems. Total configuration of the mismatched data is presented in a Table.

Numerical Analysis Methods for Eddy Current Testing for Heat Exchanger Tube with Axi-symmetric Defects (열교환기 전열관의 결함에 대한 와전류 탐상 수치해석방법)

  • Kim, Chang-Wook;Seo, Jang-Won;Kim, Shin;Lee, Hyang-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.831-833
    • /
    • 2000
  • In this paper, a numerical analysis algorithm of eddy current testing(ECT) for heat exchanger tube with axi-symmetric defects using finite element method(FEM) is presented. In the ECT FEM analysis, we used trianglular and rectangular elements for exact signal of ECT for variable shape of defects. This paper presents a systematic and efficient numerical analysis algorithm for ECT. We employ the LU decomposition and Cholesky method for solving the system matrix. This numerical analysis algorithm is effectively applied to heat exchanger tube with defects.

  • PDF

Ferromagnetic Domain Behaviors in Mn doped ZnO Film

  • Soundararajan, Devaraj;Santoyo-Salazar, Jaime;Ko, Jang-Myoun;Kim, Ki-Hyeon
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.216-219
    • /
    • 2011
  • Mn doped ZnO films were prepared on Si (100) substrates using sol-gel method. The prepared films were annealed at $550^{\circ}C$ for decomposition and oxidation of the precursors. XRD analysis revealed the presence of ZnMnO hexagonal wurtzite phase along with the presence of small quantity of $ZnMn_2O_3$ secondary phase and poor crystalline nature. The 2D, 3D views of magnetic domains and domain profiles were obtained using magnetic force microscopy at room temperature. Rectangular shaped domains with an average size of 4.16 nm were observed. Magnetic moment measurement as a function of magnetic field was measured using superconducting quantum interference device (SQUID) magnetometry at room temperature. The result showed the ferromagnetic hysteresis loop with a curie temperature higher than 300 K.

Cesium and strontium recovery from LiCl-KCl eutectic salt using electrolysis with liquid cathode

  • Jang, Junhyuk;Lee, Minsoo;Kim, Gha-Young;Jeon, Sang-Chae
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3957-3961
    • /
    • 2022
  • Deposition behaviors of Sr and Cs in various liquid cathodes, such as Zn, Bi, Cd, and Pb, were examined to evaluate their recovery from LiCl-KCl eutectic salt. Cations in the salt were deposited on the liquid cathode, exhibiting potential of -1.8 to -2.1 V (vs. Ag/AgCl). Zn cathode had successful deposition of Sr and exhibited the highest recovery efficiency, up to 55%. Meanwhile, the other liquid cathodes showed low current efficiencies, below 18%, indicating LiCl-KCl salt decomposition. Sr was recovered from the Zn cathode as irregular rectangular SrZn13 particles. A negligible amount of Cs was deposited on the entire liquid cathode, indicating that Cs was hardly deposited on liquid cathodes. Based on these results, we propose that liquid Zn cathode can be used for cleaning Sr in LiCl-KCl salt.

Structural Analysis of Two-dimensional Continuum by Finite Element Method (유한요소법에 의한 이차원연속체의 구조해석)

  • 이재영;고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.2
    • /
    • pp.83-100
    • /
    • 1980
  • This study was intended to computerize the structural analysis of two-dimensional continuum by finite element method, and to provide a preparatory basis for more sophisticated and more generalized computer programs of this kind. A computer program, applicable to any shape of two-dimensional continuum, was formulated on the basis of 16-degree-of- freedom rectangular element. Various computational aspects pertaining to the implementation of finite element method were reviewed and settled in the course of programming. The validity of the program was checked through several case studies. To assess the accuracy and the convergence characteristics of the method, the results computed by the program were compared with solutions by other methods, namely the analytical Navier's method and the framework method. Through actual programming and analysis of the computed results, the following facts were recognized; 1) The stiffness matrix should necessarily be assembled in a condensed form in order to make it possible to discretize the continuum into practically adequate number of elements without using back-up storage. 2) For minimization of solution time, in-core solution of the equilibrium equation is essential. LDLT decomposition is recommended for stiffness matrices condensed by the compacted column storage scheme. 3) As for rectangular plates, the finite element method shows better performances both in the accuracy and in the rate of convergence than the framework method. As the number of elements increases, the error of the finite element method approaches around 1%. 4) Regardless of the structural shape, there is a uniform tendency in convergence characteristics dependent on the shape of element. Square elements show the best performance. 5) The accuracy of computation is independent of the interpolation function selected.

  • PDF

Phase Transformation of Ti-Ni-Zr Icosahedral Phase and Fabrication of Porous Ti and W Compacts using Electro-Discharge Sintering (전기방전소결을 이용한 Ti-Ni-Zr 준 결정상의 상변화 연구와 Ti, W 다공체 제작)

  • Cho, J.Y.;Song, G.A.;Lee, M.H.;Lee, H.S.;Lee, W.H.;Kim, K.B.
    • Journal of Powder Materials
    • /
    • v.18 no.2
    • /
    • pp.149-158
    • /
    • 2011
  • Electro-Discharge Sintering (EDS) employs a high-voltage/high-current-density pulse of electrical energy, discharged from a capacitor bank, to instantaneously consolidate powders. In the present study, a single pulse of 0.57-1.1 kJ/0.45 g-atomized spherical $Ti_{52}Zr_{28}Ni_{20}$ powders in size range of 10~30 and $30\sim50{\mu}m$ consisting of ${\beta}$-(Ti, Zr) and icosahedral phases were applied to examine the structural evolution of icosahedral phase during EDS. Structural investigation reveals that high electrical input energy facilitates complete decomposition of icosahedral phase into C14 laves and ${\beta}$-(Ti, Zr) phases. Moreover, critical input energy inducing decomposition of the icosahedral phase during EDS depends on the size of the powder. Porous Ti and W compacts have been fabricated by EDS using rectangular and spherical powders upon various input energy at a constant capacitance of $450{\mu}F$ in order to verify influence of powder shape on microstructure of porous compacts. Besides, generated heat (${\Delta}H$) during EDS, which is measured by an oscilloscope, is closely correlated with powder size.

Recognition of Vehicle Number Plate Using Color Decomposition Method and Back Propagation Neural Network (색 분해법과 역전파 신경 회로망을 이용한 차량 번호판 인식)

  • 이재수;김수인;서춘원
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.3
    • /
    • pp.46-52
    • /
    • 1998
  • In this paper, after inputting the computer with the attached number plate on the vehicle, using it, the color decomposition method and back propagation neural network proposed the extractable method of the vehicle number plate at high speed. This method separated R, G, B signal form input moving vehicle image to computer through video camera, then after transform this R, G, B signal into input image data of the computer by using color depth of vehicle number plate and store up binary value in the memory frame buffer. After adapting character's recognition algorithm, also improving this, by adapting back propagation neural network makes the vehicle number plate recognition system. Also minimalizing the similar color's confusion, adapting horizontal and vertical extracting algorithm by using the vehicle's rectangular architecture shows the extract and character's recognition of the vehicle number plate at high speed.

  • PDF

Composite Stock Cutting using Distributed Simulated Annealing (분산 시뮬레이티드 어닐링을 이용한 복합 재료 재단)

  • Hong, Chul-Eui
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.1_2
    • /
    • pp.20-29
    • /
    • 2002
  • The composite stock cutting problem is to allocate rectangular and/or irregular patterns onto a large composite stock sheet of finite dimensions in such a way that the resulting scrap will be minimized. In this paper, the distributed simulated annealing with the new cost error tolerant spatial decomposition is applied to the composite stock cutting problem in MPI environments. The cost error tolerant scheme relaxes synchronization and chooses small perturbations on states asynchronously in a dynamically changed stream length to keep the convergence property of the sequential annealing. This paper proposes the efficient data structures for representation of patterns and their affinity relations and also shows how to determine move generations, annealing parameters, and a cost function. The spatial decomposition method is addressed in detail. This paper identifies that the final quality is not degraded with almost linear speedup. Composite stock shapes are not constrained to convex polygons or even regular shapes, but the rotations are only allowed to 2 or 4 due to its composite nature.