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Mismatching Problem between Generic Pole-assignabilities by Static
Output Feedback and Dynamic Output Feedback in Linear Systems

Su-Woon Kim

Abstract: In this paper, it is clearly shown that the two well-known necessary and sufficient
conditions mp >n as generic static output feedback pole-assignment and mp + d(m+p) > nt+d
as generic minimum d-th order dynamic output feedback pole-assignment on complex field =,
unbelievably, do not match up each other in strictly proper linear systems. For the analysis, a
diagram analysis is newly created (which is defined by the analysis of “convoluted
rectangular/dot diagrams” constructed via node-branch conversion of the signal flow graphs of
output feedback gain loops). Under this diagram analysis, it is proved that the minimum d-th
order dynamic output feedback compensator for pole-assignment in m-input, p-output, n-th
order systems is quantitatively decomposed into static output feedback compensator and its
associated d number of arbitrary Ist order dynamic elements in augmented (m—+d)-input,
(ptd)-output, (n+d)-th order systems. Total configuration of the mismatched data is presented
in a Table.

Keywords: Decomposition of dynamic output feedback in augmented static output feedback
systems, generic pole-assignment, Grassmann invariant of static output feedback linear systems.

1. INTRODUCTION

The previous and current studies on the static and
dynamic output feedback (O. F.) pole-assignment
problems in linear (finite-dimensional time-invariant)
systems have heavily depended upon pure mathematic
power (like algebraic geometry, algebraic topology,
exterior algebra, and so on)[1-5]. It is due to intrinsic
high nonlinearity of the O. F. problems which is hard
to handle by traditional methodology and technical
algorithms available in classical and modern system
theory. However even in these pure mathematical
approaches, major outcomes on pole-assignment
conditions have been obtained within incomplete
forms which can lose some essential control engin-
eering attributes [6-8]. The goal of this paper is to
check in what extend the incomplete mathematical
outcomes, so-called generic static and dynamic O. F.
pole-assignment conditions are valid or invalid,
comparing with the complete (i.e., exact) static and
dynamic O. F. pole-assignment conditions. As an
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effective tool for this goal, the author creates a
diagram analysis, as a simplified signal flow graph
analysis of O. F. gain loops (see Section 2 and Section
3), and which is named by “a lattice diagram analysis”
in this paper.

This lattice diagram analysis is defined by the
analysis of “convoluted rectangular/dot diagrams”
constructed via node-branch conversion of the signal
flow graphs (SFGs) of O. F. gain loops. Through the
lattice diagram analysis, some invalid mismatching
problem is revealed as follows:

“The two well-known necessary and sufficient

(simply, N and S) conditions mp = n as generic

static O. F. pole-assignment on complex field

by Hermann and Martin [1, Theorem 6.1] and mp

+ d(mtp) = ntd as generic minimum d-th order

dynamic O. F. pole-assignment on complex field &

by Rosenthal [4, Theorem 5.11], do not match up

each other in strictly proper linear (controllable and

observable) systems.”
Following rationale checks this mismatching problem.
At first, through the lattice diagram analysis, it is
shown that structural quantitative relationship
between static O. F. compensation and minimum d-th
order dynamic O. F. compensation for pole-
assignment is derived within simple numerical
relation as following:

“The minimum d-th order dynamic O. F. compen-

sator for pole-assignment in original m-input, p-

output, n-th order linear systems is decomposed into

static O. F. compensator and its associated d
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number of arbitrary [st order dynamic (transfer
function) elements in maximally augmented (m+d)-
input, (p+d)-output, (n+d)-th order linear systems.”
(1)
(The quantitative relationship was roughly expected
by Kimura in [6, p.2105].) Secondly, for investigation
of the invalidity of the mathematical incomplete
outcomes (of generic ...), the structural quantitative
relationship of (1) is applied to the well-known N and
S condition of generic static O. F. pole-assignment on
complex field . in strictly proper systems [1]

mpzn 2)

then in the case of strictly proper dynamic elements,
we can induce directly a N and S condition of generic
minimum d-th order dynamic O. F. pole-assignment
on .by

(m+d)(ptd) 2 ntd (3a)

and in the case of proper dynamic elements, we can
induce directly a N and S condition by

(m+d)(p+d) = nt+d+1 (3b)

(as it was known to be the N and S condition of
generic static O. F. pole-assignment on . in (m+d)-
input, (pt+d)-output, (n+d)-th order proper systems [12,
Theorem 5.3(c)]). But unbelievably, the induced
outcomes of (3a) and (3b) are dissimilar with the well-
known N and S condition of generic minimum d-th
order dynamic O. F. pole-assignment on : in strictly
proper systems [4]

mpt+d(m+p) = ntd, 4

which is right and which is wrong ?

Finally, for analyzing this mismatching problem,
the rank of “dynamic Grassmann invariant” (defined
by (static) Grassmann invariant in augmented static O.
F. system, symbolizing L™ in this paper [11,12]) is
numerically calculated to check whether a necessary
condition of complete static O. F. pole-assignment,
full-rank of Pliicker submatrix of L™ is satisfied or
not {12, Proposition 5.1]. Under the rank test, the
mismatching problem is answered as follows:

“In CASE I (min{m, p} = 1 systems with d = 1):
The induced outcome (3a) provides no intersections
for pole-assignment (i.e., none pole-assignment) in
the marginal area of mp + d(m+p) ~ (m+td)(p+d).
Meanwhile, the original one (4) provides complex
or real intersections for pole-assignment.

In CASE II (min{m, p} = 1 systems with 4 > 2):
The original one (4) is conservative by amount of
d*-1 in general. Meanwhile, the induced outcome

(3a) provide complex or real intersections for pole-
assignment in non-conservative way (except m=p
=1,d=2).

In CASE III (MIMO system with d > 1): The

original one (4) is conservative by amount of &

(when d = 1) and d*-1 (when d >2). Meanwhile,

the induced ones (3a) and (3b) provide complex or

real intersections for pole-assignment in non-

conservative way.” (5)
(For details, see the Table 1 in Section 6.) From (5),
we can immediately deduce following facts.

Deduced fact-1 (insufficient triples (m, n, p) for
complete static O. F. pole-assignability): It is clear
that the N and S conditions of complete static O. F.
pole-assignment conditions on "© in strictly proper
systems cannot be obtained only by terms of input
number (m), output number (p) and system order (n).
See the CASE I of min{m, p} = 1 systems with d =1,
the induced outcome (3a) provides no intersections for
pole-assignment in the marginal area of mp + d(m+p)
~ (mtd)(ptd). Thus, the “degenerate” static O. F.
min{m, p} = 1 systems with input number m' = m-+d =
m+1, output number p’ = p+d = p+1, and system
order n' = n+td = ntl, have no intersections, i.e.,
none pole-assignable on © in the marginal area, even
though the static O. F. systems in the CASE II and
CASE 111, are pole-assignable in the marginal area.

Deduced fact-2 (conservatism in generic minimum
order dynamic O. F. pole-assignability): 1f the order of
dynamic O. F. compensator for pole-assignment is
somewhat high like d >> 1 (see the CASE II and
CASE III), then the currently well-known generic
outcome mp + d(mtp) =2 ntd is too much
conservative. For instance, when d = 10, the
conservatism of the generic outcome reaches to 10 -1
= 99th order.

The earlier major consequence in (1) is also
significant in following sense:

“In (1), a fixed quantitative relationship between

minimum d-th order dynamic O. F. compensation

and static O. F. compensation for pole-assignment
is derived. Thus any outcomes (like generic or
complete necessary and/or sufficient conditions,
invariants, canonical forms, etc.) regarding to
minimum d-th order dynamic O. F. pole-assignment
can be induced directly from the pre-known
outcomes regarding to static O. F. pole-assignment,

or vice versa.” (6)
From the Deduced fact-1, Deduced fact-2 and (6),
following questions naturally arise as future theore-
tical issues.

Question-1: 1s the well-known sufficient condition
of generic static O. F. pole-assignment on .- in strictly
proper systems, mp > n [3], to be the sufficient
condition of complete static O. F. pole-assignment on
.<, combining with full-rank of Pliicker submatrix of L
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(as a necessary condition of complete static O. F. pole-
assignment) ? — vice versa, is the (m+d)(p+d) > n+d
or (m+d)(ptd) > ntd+1 to be the sufficient cond-
ition of complete minimum d-th order dynamic O. F.
pole-assignment on < in strictly proper systems,
combining with full-rank of Plicker submatrix of
Laug ?

Question-2: 1s the Grassmann invariant L to be a
complete invariant (or a canonical form) under static
O. F. group action for system poles ? — vice versa, is
the dynamic Grassmann invariant L®® to be a
complete dynamic invariant (or a canonical form)
under (minimum order) dynamic O. F. group action
for system poles [13,14] ?

These two important questions seem to be deeply
related in each other. So if one question is completely
solved, then it is expected that the other question shall
be also easily solved. So if these questions are
partially or totally solved, we can systematically apply
them to compute and parameterize the static O. F.
compensator under Grassmannian-oriented para-meter
L — vice versa, we can systematically apply them to

compute and parameterize minimum order dynamic O.

F. compensator under Grassmannian-oriented para-
meter L™¢).

Recall that the definitions of complete static O. F.
pole-assignment and generic static O. F. pole-
assignment in the linear system of transfer function
matrix G(s) are described as follows.

Definition 1 (complete static O. F. pole-
assignment): In the closed-loop characteristic
polynomial det [Dy(s) + Ni(s)K] = s" + a;s" + ... +
ay.; 5§ + a, of irreducible strictly proper (or proper)
transfer function matrix G(s) = D.(s)'Ny(s), if there
exist real O. F. matrices K € X" for all arbitrary real
coefficients (ay, ... , @) € R" (or (1, ay, ... , a,) €

- ontl

~777)), then it is called that the linear system G(s) is

completely pole-assignable by static O. F. (of real O. F.

gain matrix).

Definition 2 (generic static O. F. pole-
assignment): In the closed-loop characteristic
polynomial det [Dy(s) + N(s)K] = s" + a;s™" + ... +
ap.; s + a, of irreducible strictly proper (or proper)
transfer function matrix G(s) = DL(s)’lNL(s), if there
exist open dense sets of real coefficients (a, ... , a,) €
“Mor (1, apy ..., ay) € R™™)) over all real O. F.
matrices K e ™7, then it is called that the linear
system G(s) is generically pole-assignable by static O.
F. (of real O. F. gain matrix).

2. ONE-TO-ONE DIAGRAM
REPRESENTATIONS OF ALL O. F. LOOPS

2.1. Alternative connectivity
In m-input, p-output static O. F. linear systems, all
the O. F. gain loops (simply, O. F. loops) have a

distinctive specific structure — forward transfer
functions and feedback gains are always alternatively
connected between input nodes and output nodes in
same number. See the SFGs of single forward
(transfer function) path loop, multi forward 2 (transfer
function) path loop, and multi forward 3 (transfer
function) path loop in Fig. 1, and see the 2 types of
nontouching loops (of nonmaximal number of
nontouching loops and maximal number of non-
touching loops) in Fig. 2. The Fig. 1(a) shows a single
forward path loop of -G(s)k;;, and the Fig. 1(b) shows
a multi forward 2 path loop of -G(s)k;jG(s)ks, and
the Fig. 1(c) shows a multi forward 3 (transfer
function) path loop of - Gy(s)kjGu($)kusGsl(s)ky
(where 1<i s, v<m indicate input nodes, and 1
</, t, w < p indicate output nodes). The Fig. 2(a)
exhibits nonmaximal 2-nontouching loops of -
Gap($)kpg, and -Gk, Gyu(s)kys, and the Fig. 2(b)
does maximal m-nontouching loops of -Gy ji(s)
k1+e,1’ 'G2,2+e(s)k2+e,2: cee s and ‘Gm,m+e(s)km+e,m
(where 0<e<p-m in m<p systems).

Remark 1: In this paper, for convenient SFG
analysis of forward (transfer function) path P; from

i Gy J
i Gi' J - kg kjs
:; {: N t
G

- kji st
(a) (b)

GVW
(©)

Fig. 1. SFGs of some O. F. loops.

@ (b)

Fig. 2. SFGs of some nontouching O. F. loops.
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node (i) to node (j) in coincidence with matrix
coordinate M(i, j), the author describes a transfer
function matrix in mXp matrix setting with symbol
G(s)*® e " (s)™* (rather than in traditional pxm
matrix setting, G(s) € . (s)™").

2.2. Matrix coordination of O. F. loops

From the alternative connectivity of transfer
functions and feedback gains between input nodes and
output nodes of O. F. loops, one can simply transform
the classical SFGs of O. F. loops info certain
coordinated diagrams within the mxp matrix
coordinates. Consider a loop transformation via
“node-branch conversion” — where the branches of
forward (transfer function) paths and (O. F.) feedbacks
are just shrunk to be new nodes, and the input and
output nodes are just lengthened to be new branches
with direction of signal flow.

Then the SFGs of Fig. 1 and Fig. 2 are transformed
to coordinated diagrams like Fig. 3 and Fig. 4,
respectively. We shall call them by “coordinated
rectangular/dot diagrams” (simply, rectangular/dot
diagrams) of O. F. loops. In Fig. 3 and Fig. 4, “node
with symbol (0)” in a coordinate i indicates a forward
transfer function Gj(s) and “node with symbol (A)”
in a coordinate (if) as the transposed position of ij
indicates a feedback gain k; In Fig. 3(a), a single
forward path loop is simply figured by “a twofold
double node (®)” without branches because the
coordinate of transfer function Gy(s) and the
transposed coordinate of feedback gain k; s
overlapped in same position; see Fig. 5.

ij (it
ij (i)
o (sw)’
ij (or (i/)) () st
) vw
(a) (b) (©)

Fig. 3. Rectangular/dot diagrams of some O. F. loops.

11

ab 22
33

) it
m-1,m-1

sj st)
(a) (b)

Fig. 4. Rectangular/dot diagrams of some nontouching
O. F. loops.

b ij (or, (i)")

Fig. 5. One point coordination of a single forward path
loop.

In Fig. 4(b), the m number of (double node) dot
diagram shows maximal m-nontouching loops where
e = 0. Now we need to check whether all the
rectangular/dot diagrams obtained via node-branch
conversion of O. F. loops are distinguishably one-to-
one correspondent and is continuous over original
SFGs of O. F. loops.

Theorem 1 (one-to-one diagram representations
of all O. F. loops): In m-input, p-output static O. F.
linear systems, the rectangular/dot diagrams of O. F.
loops within the mxp matrix coordinates via node-
branch conversion are one-to-one correspondent and
continuous over all kinds of original SFGs of O. F.
loops.

Proof: In all O. F. loops of static O. F. linear
systems, the forward transfer functions and feedback
gains are always alternatively connected between
input nodes and output nodes in same number.

And as seen in Fig. 1, ..., Fig. 5, the node-branch
conversion is defined by the loop transformation
where the branches of forward (transfer function)
paths and (output gain) feedbacks of original SFGs
are just shrunk to be new nodes of (o) and (A), (or,
doubly overlapped nodes (@ )) respectively, and the
input and output nodes of original SFGs are just
lengthened to be new branches with the same direction
of signal flow of each O. F. loop.

Thus the loop transformation via node-branch
conversion is continuous, and the rectangular dia-
grams with nodes of (o) and (A) and dot diagrams
with doubly overlapped nodes (@) within the mx>p
matrix coordinates are one-to-one correspondent to all
kinds of original SFGs of O. F. loops. a

3. LATTICE DIAGRAM — CONVOLUTED
DIAGRAM OF RECTANGULAR/DOT
DIAGRAMS

3.1. Lattice diagram expressions

When we focus locally on a 2x2 transfer function
submatrix shown in Fig. 6(a), correspondent SFGs are
figured like Fig. 6(b), where one can find 3 kinds of O.
F. gain loops: a multi 2-path loop of - G,k,3G;53ks;
(composed by thick signal flows), and maximal 2-
nontouching loops of (- G2okz2), (- Gsskszz), and two
single path loops of - Gak;; and - Gjsks;.
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Fig. 6. SFG of a 2x2 sublattice.

We shall express all O. F. loops in a 2x2 (closed-
loop) transfer function sub-matrix in a 2x2 lattice-
form, replacing the overlapped transfer function nodes
(o) with only black dots(e) without expression of the
feedback gain nodes (A) because they are always fully
connected. We shall call it by “2x2 sublattice”.

In this way, we can express all O. F. loops in any
NxN (closed-loop) transfer function submatrices by
“NxN sublattices” with only black dots(e) (where N
< min{m, p}). Main features of NxN sublattices are
summarized as follows:

1) Any NxN sublattice of a MIMO system is

decomposed into, at least, “3 kinds of” elementary

O. F. loops of single path loops, maximal z-non-

touching loops, and multi z-path loops (and multi ;-

path loops and nonmaximal (z-i)-nontouching

loops) (where z<N and N=2,..,min{m, p}).

2) In any NxN sublattice of a MIMO system, there

is, at least, “a product” of maximal N-nontouching

loops, or “two products or greater than two
products” of maximal w-nontouching loops (where

w < N). The former is called well-posed NxN

sublattices (or transfer function submatrices) and

the latter is called ill-posed NxN sublattices (or

transfer function submatrices). @)
The diagram in Fig. 7(a) presents a well-posed 3x3
sublattice having a product of maximal 3-nontouching
loops, (-G3k;31)(-G2sks2)(-Gs1k3).  But the diagram in
Fig. 7(b) presents an ill-posed 3x3 sublattice having
no maximal 3-nontouching loops, but having 4
maximal 2-nontouching loops, (-G;3k3/)(-G2ik12), (-
G 3k3))(-G2rk22), (-G2iki2)(-G3sks3), (-Gaok22)(-G33k33).

13 13

31 33
(a) (b)

Fig. 7. A well-posed 3x3 sublattice and an ill-posed
3x3 sublattice.

By the same way, we can express all O. F. loops in
the mxp (closed-loop) transfer function matrix by “a
mxp lattice” with only black dots(e). For distinction
with NxN sublattices, the mxp lattice is figured by the
diagram with double outline. See the Fig. 8.

3.2. Minimal position of transfer functions

As seen in Fig. 7 and Fig. 4(b), the products of
(transfer functions and O. F. gains in) maximal N-
nontouching loops are always located in the crosses of
any two different pairs of row (horizontal) lines and
column (vertical) lines. Hence we can obtain
following Corollary.

Corollary 1: In a well-posed NxN sublattices of
transfer function submatrices, the minimum number of
transfer functions is V.

Proof: By definition of well-posedness, there is at
least a product of maximal N-nontouching loops
which is located in the “N number of crosses” of
different row (horizontal) lines and different column
(vertical) lines. Since a product of maximal N-
nontouching loops has only N number of transfer
functions, the minimum number of transfer functions
in well-posed NxN sublattices is to be N. r

From Corollary 1, we can define “a minimal
position” which has minimum number of transfer
functions as following.

(G” G12 O O G]p \
0 GZZ 0 cee Gzyp_1 O
G =10 0 Gy 0 Gy,
Gm 0 0 .. m,p- 0

\ O Gt 0

m,p-1

Fig. 8. Lattice diagram expression for all convoluted
O. F. loops.
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Definition 3 (minimal position of transfer
functions): In a well-posed NxN sublattices of
transfer function submatrices, any N-crossed position
(of a product of maximal N-nontouching loops) is
defined by “a minimal position” providing minimum
number of transfer functions.

Remark 2: The author names the partial and total
convolutions of rectangular/dot diagrams by “sub-
lattices and lattice (diagram)” by just resemblance of
their external appearances. But it is notable that
these terminologies have utterly different meanings of
the traditional terminologies, “lattice and sublattices”
in lattice theory of graphic mathematics [15].

4. LATTICE DIAGRAM ANALYSIS—
DECOMPOSITIVE ANALYSIS OF
DYNAMIC O. F.

4.1. Decomposition mode

In SFG viewpoint, the dynamic O. F. compensator
H(s) between output y(s) and input r(s) of a SISO
system can be decomposed into “static O. F. compen-
sator K¢ ¢ - DML Gith elements kg, kia, kor,
ky;’and “its associated dynamic (transfer function)
elements G;.(s), G.as), Gz(s)” of an augmented 2-
input, 2-output MIMO system like Fig. 9.

In the same way, the dynamic O. F. compensator
H(s)* e (sY”™ between output vector y(s) = [y(s),
vas), on yp(s)]’ and input vector r(s) = [r;(s), r2(s),

., ra(s)]' of a m-input, p-output MIMO system
can be decomposed into “augmented static O. F.
compensator K> Ce T and “its associated
dynamic (transfer function) elements Gusp+i(S),
{Gip+1(8), Gusr(s) forall i=1,...,m and j=1,

., p}” of an augmented (m+1)-input, (p+1)-output
system; see Fig. 10. But in this case, the dynamic
compensator H(s)>" Y is not minimum order. Consider
maximally degenerated dynamic element case where
only one dynamic element locates in a crossed
position of G+, p+/(s) like Fig. 11,

Hence if the order of G, ,+:(s) is “17, then the
dynamic compensator H(s)*C is to be minimum order
by “1” by definition of system order (the order of LCM

Fig. 9. Augmentation of SISO dynamic O. F. system
into 2-input, 2-output static O. F. system.

H(s)"C

’ G(s) SFG ; y

A

]

N

Gm+1,p Gm+1,p+1

Fig. 10. Augmentation of m-input, p-output dynamic
O. F. system into (m+1)-input, (p+1)-output
static O. F. system.

p

—M

{0

Fig. 11. Lattice diagram with a dynamic element
in a crossed position.

— Gm+1.p+l(5)

] =

i - I
M m+1.pt] " mp-1.g+

Gm+2.p+2 Gm+2.p+l

Fig. 12. Lattice diagram with 2 dynamic elements in
two crossed minimal positions.

(least common multiplying denominator) of all minors
in G(s)* e i(s)™ ),

If the order of Gp+sp+/(s) is “2”, one can make
further input-output augmentation in the two crossed
minimal positions, {Gu+ip+/(S), Guizp+2(s)} or
{Gm+1,p+2(8), Gz, pri(s)} like Fig. 12,

In the same way, if the order of G+ ,+/(s) is “d” in
Fig. 11, one can make input-output augmentations in
the “d! number of d-crossed minimal positions” like
Fig. 13.
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Fig. 13. Lattice diagrams with 1st order dynamic
elements in d! number of minimal positions.

As shown in Fig. 11 - Fig. 13, the augmented (input
and output) numbers are maximized, when all the
dynamic elements are minimized by 1st order in a d-
crossed minimal position. We shall call this
decomposition mode by “maximal gain-loop decom-
position mode” of dynamic O. F. compensator.
Hence we can easily prove that the minimum order
dynamic O. F. compensator H(s)" ¢""cR(s)"" for
pole-assignment is earned in the maximal gain-loop
decomposition mode of dynamic O. F. compensator.

Lemma 1 (decomposition mode of minimum
order dynamic O. F. compensator): The pole-
assignment conditions by minimum order dynamic O.
F. compensator in linear system are equivalently
obtained by the pole-assignment conditions by static
O. F. compensator in augmented linear system which
are augmented into the mode of maximal gain-loop
decomposition of the dynamic. O. F. compensator.

Proof: In maximal gain-loop decomposition mode
of dynamic O. F. compensator, the numbers of input
and output of system are “maximally augmented”
since the dynamic elements locate in a minimal
position (of a well-posed dxd sublattice), and the
orders of dynamic elements are minimized by 1st
orders. Hence we need to check following 2
necessary conditions which naturally cover sufficient
conditions.

1) Dimensional necessary condition: In this
decomposition mode, the number (#) of O. F. gain
variables is maximized and the number (#) of O. F.
gain equations is minimized so that the necessary
condition of (complete) static O. F. pole-assignment
on .« and - (obtained by dimension argument in
nonlinear O. F. equations),

#variables > #equations ®)

is well satisfied within minimum number of dynamic
elements, i.e., minimum dynamic order.

ii) Invariant necessary condition: By SFG theory,
the invariant necessary condition of (complete) static
O. F. pole-assignment of augmented systems in
maximal gain-loop decomposition mode of dynamic
elements, “full-rank of Pliicker submatrices of L*&”
on < and <* (obtained by dimension argument in linear
vector O. F. equation L™k™ = a™®), is always
preserved as the invariant necessary condition of
(complete) minimum order dynamic O. F. pole-
assignment; for the meaning of the symbols, L™®, k™®
and ™%, refer to Definition 4 and Section 5.2 in next
section. 1) and ii) complete the proof. r

4.2. Structural quantitative relationship

From Lemma 1, one can also obtain immediately
Theorem 1, which shows the “structural quantitative
relationship” between static O. F. and minimum order
dynamic O. F. for pole-assignment.

Theorem 1 (structural quantitative relationship):
The minimum d-th order dynamic O. F. compensator
for pole-assignment in original m-input, p-output, n-th
order linear systems is quantitatively decomposed into
static O. F. compensator and its associated 4 number
of Ist-order dynamic elements in augmented (m+d)-
input, (p+d)-output, (n+d)-th order linear systems.

Proof: From Lemma 1, the minimum d-th order
dynamic O. F. compensator for pole-assignment is
decomposed into the mode of maximal gain-loop
decomposition.

Thus, the minimum d-th order dynamic O. F.
compensator is quantitatively decomposed into static
O. F. compensator and its associated d number of 1st-
order dynamic elements in augmented (m+d)-input,
(p+d)-output, (nt+d)-th order linear systems, by
definition of maximal gain-loop decomposition. i

Remark 3: As mentioned in Section 1, this
Theorem 1 is significant, because any outcomes (like
generic or complete necessary and/or sufficient
condition, dynamic invariants, canonical forms, etc.)
regarding to minimum order dynamic O. F. pole-
assignment can be induced directly from the pre-
known outcomes (of generic or complete necessary
and/or sufficient condition, static invariants, canonical
forms, etc.) regarding to static O. F. pole-assignment,
Or vice versa.

Remark 4: From the Theorem 1, a general gain
formula for computation of minimum order dynamic
O. F. compensator H(s)*"“™"c(s)”" for pole-
assignment is derived (or induced) from the static O. F.
compensator K> 0#€ ¢ R0 D 4nd associated d
number of arbitrary 1lst order dynamic elements.
Considering a diagonally descending minimal position
in Fig. 13(1), the general gain formula for compu-
tation of each element H;(s) ™" of H(s)*" %" is
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obtained by

G a(s)
—H )" =k (kg —— ok,
J i Jam+t l—el(S)VV]l/(S) P+l

€,(s)

m p+d.i )

+ ki

where W7 (), , Wy ij(s) are provided by

Wlij(s) = kp+|_m+l

+ ;ﬁz kp+l,m+k ’ 1—e, (esk)zi)%’ o ’kp+x,m+1
Wdij(s) = k,;+d. m+d

+ ii; Kpeamer” T ex(i};l(‘i)»,x. — Kprimed

forall j=1,...,p and i=1, ..., m (this deri-
vation is not hard if the SFG theory is precisely
employed).

4.3. Induction of (new) N and S condition

From Theorem 1, we can induce a (new) N and S
condition of generic minimum order dynamic O. F.
pole-assignment on . from the well-known N and S
condition of generic static O. F. pole-assignment on - ,
mp>n in strictly proper systems.

Theorem 2 (induction of new N and S cond-
ition): In m-input, p-output, n-th order strictly proper
linear systems, (m+d)(p+d) 2 ntd or (mtd){(ptd) =
n+d+1 is induced as new N and S condition of generic
minimum d-th order dynamic O. F. pole-assignment
on complex field .

Proof: From Theorem 1 (structural quantitative
relationship), new N and S condition of generic
minimum d-th order dynamic O. F. pole-assignment in
strictly proper systems on . can be directly induced
from the N and S condition of generic static O. F.
pole-assignment mp > n on . in strictly proper
systems.

1) If all the d number of 1st order dynamic elements
are to be “strictly proper”, new N and S condition of
generic minimum d-th order dynamic O. F. pole-
assignment in strictly proper systems on . is directly
induced by (m+d)(p+d) = n+d.

i)If all or some of the d number of 1st order
dynamic elements are to be “proper”, the N and S
condition is directly induced by (m+d)(p+d) > n+d+1
[12,Theorem 5.3(c)]. 1) and ii) complete the proof.

As mentioned in Section 1, the induced N and S
condition of generic minimum order dynamic O. F.
pole-assignment on :, (mt+d)(ptd) = wntd or
(mtd)(pt+d) = nt+d+1 are dissimilar with original N
and S condition of generic minimum order dynamic O.

F. pole-assignment on :, mp + d(mtp) = n+d by
Rosenthal [4, Theorem 5.11]. We shall call this

_ dissimilarity by “mismatching problem” between two

(incomplete) generic outcomes on static O. F. pole-
assignment condition, mp > n and minimum order
dynamic O. F. pole-assignment condition, mp +
d(m+p) = n+d on

4.4. Induction of dynamic Grassmann invariant

From Theorem 1, we can induce and define
dynamic Grassmann invariant from the (static)
Grassmann invariant in augmented static O. F. linear
systems as following.

Definition 4 (dynamic Grassmann invariant,
L*®): The Grassmann invariant, so-called Pliicker
matrix L™ in qugmented (m+d)-input, (p+d)-output,
(n+d)-th order static O. F. linear systems (which is
augmented by d number of Ist-order dynamic
elements) is defined by “(minimum order) dynamic
Grassmann invariant” in m-input, p-output, n-th order
dynamic O. F. linear systems.

5. DECISION OF 1°T ORDER DYNAMIC
ELEMENTS

The decision of “properness or strictly properness”
of the (arbitrary) 1st order dynamic elements is made
through the rank analysis of dynamic Grassmann
invariant L™ whose construction algorithm is pro-
vided in Section 5.2.

5.1. Complete parameterization

The Grassmann invariant (so-called Pliicker matrix)
L is theoretically derived from the “polynomial
Grassmann-representative” of column-spanned poly-
nomial vector space of MFD (matrix fraction
description) of closed-loop transfer function matrix by
Giannakopoulos and Karcanias [11] (refer to Appen-
dix. B). Whence it is proved that the Grassman
invariant is to be a complete invariant of the column-
spanned polynomial vector space [11, 12(Theorem
4.1)]. And it is also shown that from the linear vector
equation Lx = a, the full-rank condition of the (first
column and first row curtailed) Pliicker submatrix L™

LA NXo
[SEFRN R

rank L** = n 9)

is to be a necessary condition of complete O. F. pole-
assignment as well as a well-known necessary
condition mp=n in strictly proper systems [12, Cor

ollary 5.1.1] (where ¢ = (’”;”)- 1). And in the sameway

the full-rank of the (first column curtailed) Pliicker
submatrix L™'e <" e,
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rank L' = p+1 (10)
is to be a necessary condition of complete O. F. pole-
assignment as well as a well-known necessary
condition mp > n+1 in proper systems[12, Corollary
5.3.1]. Thus, we can check possible none pole-
assignability on ° by rank test of Pliicker submatrix
L in the generic static O. F. pole-assignment
condition mp > n in strictly proper systems. In
the same way, from Theorem 1, we can also check
none pole-assignability on (& by rank test of Pliicker
submatrix L*4*” in the generic minimum order
dynamic O. F. pole-assignment condition mp +
dm+p) 2 n+td and (m+d)(p+d) = ntd in “aug-
mented static O. F. strictly proper” systems, and by
rank test of Pliicker submatrix L“****" in (m+d)(p+d)
> n+d+1 in “augmented static O. F. proper” systems.

5.2. Construction of dynamic Grassmann invariant
The internal structure of dynamic Grassmann
invariant L** (as Grassmann invariant in augmented
system) is presented in the linear vector product
formula L™¢k™¢ = g*® in Fig. 14 [12], where k™¢=
[1 k[] k21 kp+d,m+d kj] kl‘,«]Z indicates O. F. gain
vector whose elements consists of Pliicker coordinates
in projective space .. 7%, ¢* = (prd)x(m+d), r= o' — ¢,
and @™ = [l a; ... a,+4]' indicates arbitrary real
coefficient vector of closed-loop characteristic poly-
nomial D¢;™8(s) of augmented system (where o

= (m+prd)_ 1), And D._,"(s) and D, ,“(s) indicate

m+d
real coefficient vector columns of open-loop and
closed-loop characteristic polynomials of augmented
systems, respectively. The -Ny, ... -N,, and -ny,
... ,-ng indicate the “-1” multiplied real coefficient
vector columns of numerators of augmented transfer
function matrix and dynamic elements e(s), ... ,
e s), respectively (whose all denominators are nor-
malized by LCD, i.e., open-loop characteristic poly-
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nominal Do, "®)[16]. And I;, ..., I, indicate the real
coefficient vector columns of the nonlinear interacting
factors of augmented transfer function matrix (whose
denominator is also normalized by Dy.;“®). Under
SFG analysis, the nonlinear interacting factors of
augmented static O. F. linear (MIMO) systems are
constructed by

Li: 1(-1)* {2x2 minors of G““¢(5)}
- {correspondent 2x2 minors of KF G“"‘g}
Iy: ™ (-1) {zxz minors of G*“¢(s)

- {correspondent zxz minors of KSFGaug }
(11

(where r =0 -¢",and 2<z<N, N=2, ...,
min{m, p}).

5.3. Decision of 1* order dynamic elements

Prior to application of Theorem 1 (structural
quantitative relationship) to static O. F. pole-
assignment condition for direct induction of minimum
order dynamic O. F. pole-assignment condition, we
need to investigate whether there is certain intrinsic
rank reduction effect, depending upon the “properness
and strictly properness” of the arbitrary 1st order
dynamic elements. We shall check possible intrinsic
rank reduction effect by counting the rank of Pliicker
submatrices L6 e (M0 gpg presbe (Uridxer
in the maximum number of (possible linearly indepen-
dent) columns under assumption that row vectors are
linearly independent, because the degeneracy of
augmented transfer function matrix of augmented
static O. F. system is heavily related with the number
of nonzero columns but is hardly related with the
number of nonzero rows.

Lemma 2 (column rank reduction by strictly

proper dynamic elements in 4 > 2): In maximal
Do™ Ny -Nai . -Npw-nj...-ng Ly I L, D¢
1)
S i N ki 1)
g b, i i ks, a
i linear i nonlinear (interacting)
E terms’ coefficients i terms’ coefficients =
i i kp+d, ma
s vy :I E k; Ap+d-1
1 \_bu+a é ; Y, . \anﬂ,J
& _J

Fig. 14. Internal structure of L*4k™% = g™
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gain-loop decomposition of dynamic O. F. compen-
sator, if the arbitrary 1st order dynamic elements of
augmented static O. F. systems are strictly proper and
d > 2, then the column rank of Pliicker submatrix is
intrinsically reduced by
1+ [(mp)A + 2’ NxN minor]: Ldr2]

by strictly proper dynamic elements (where (mp) (<
mp) indicates actual number of nonzero transfer
functions, and 2’ NxN minor indicates sum of all kinds
of NxN minors for N=2, ...,z (< min{m, p}), and
|x] indicates the nearest integer lower than or equal
to x).

Proof: See the Appendix A.

Lemma 3 (no column rank reduction in proper
dynamic elements in d 2 2): In maximal gain-
loop decomposition of dynamic O. F. compensator, if
the arbitrary 1st order dynamic elements of augmented
static O. F. systems are proper and d = 2, then there
is no intrinsic column rank reduction of Pliicker
submatrix by the proper dynamic element.

Proof: See the Appendix A.

In similar manner of Lemma 2 and Lemma 3, we
can prove that in d = 1 case, there is no intrinsic
column rank reduction effect in strictly proper systems
(unlike d = 2 case).

Lemma 4 (no column rank reduction by strictly
proper dynamic element in 4 = 1): In maximal
gain-loop decomposition of dynamic O. F. compen-
sator for pole-assignment, if the arbitrary 1st order
dynamic elements of augmented static O. F. systems
are strictly proper and d = 1, then there is no intrinsic
column rank reduction of Pliicker submatrix by the
strictly proper dynamic element.

Proof: See the Appendix A.

(For the relation of column or row rank with matrix
rank, see the Appendix C.)

6. ANALYSIS OF MISMATCHING PROBLEM
UNDER INVARIANT RANK CONDITION

We shall check the rank of real matrix L* e
(md** by calculation of maximal number of
columns — the numbers (#) of linear terms and
nonlinear terms, under assumption that row vectors
are linearly independent, in a lattice diagram of
augmented (m+d)-input, (p+d)-output, (n+d)-th order
linear static O. F. systems. For convenience, we
shall consider a diagonally descending minimal
position as shown in Fig. 13(1).

6.1. SISO system case (where m=1,p=1)

From Fig. 14 and Fig. 15, the number of nonzero
columns in dynamic Grassmann invariant (which
should be greater than and equal to the system order
ntd or ntd+l for the full-rank of L% or
L#"y s calculated by

#linear terms + #2x2 minors + #3x3 minors
+ ... + #(1+d)x(1+d) minors
(1+d) + (1+d) di2! + (1+d)d(d-1)/3! + ...
+  (1+d)V/(1+d)!

> ntd or ntd+l (12)

1l

6.2. SIMO system case (where m=1,p>1)

From Fig. 14 and Fig. 16, the number of nonzero
columns in dynamic Grassmann invariant (which
should be greater than and equal to the system order
n+d or ntd+l for the full-rank of L% or
L%y s calculated by

#linear terms + #2x2 minors + #3x3 minors
+ ... + #(+d)x(1+d) minors
(ptdy + {pld+td(d-1)2! + d(d-1)(d-2)/3!
+...+d/d] + dd-D)2V+ .. +didY
ntd or ntd+l (13)

v

6.3. MISO system case (where m>1,p=1)
In the same way with SIMO case above, the
number of nonzero columns is calculated by

(m+d) + {m[d+d(d-1)/2! +d(d-1)(d-2)/3! + ...
+d\d\] + dd-D)2'+ ..+ dVd'}
>ntd or ntd+l. (14)

6.4. MIMO system case (where m >2,p > 2)
In m-input, p-output MIMO systems case, the
number by nonzero columns is obtained by

G(?_l

e;(s

exs)

e

Fig. 15. Lattice diagram of augmented static O. F.
systems in SISO system case.

e4(s)

Gi(s) Gp(s)

... i(s)
- *

" Texs)

f_{l

Fig. 16. Lattice diagram of augmented static O. F.
systems in SIMO system case.

eds)
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((mp) +d) + {(mp)" [d+d(d-1)/2! + d(d-1)(d-2)/3!
+otdVd] + dd-1)20+ L+ dldY
+ {(mp)}*
> pt+d or ntd+l (15)

(where (mp) implies (mp) = mp in nondegenerate
systems having no zero-transfer function(s), and
implies (mp) < mp in degenerate systems having
some zero transfer function(s), and {(mp)}* = {Z
NxN minor | N = 2, ..., z (£min{m, p})} indicates
sums of all kinds of nonlinear interacting terms in m-
input, p-output MIMO systems).

From (12) — (15), we can obtain total configuration
on the mismatching problem in Table 1, where the
degenerate case of MIMO systems is excluded where
the conservatism or empty set case is not uniquely
determined. From Table 1 the mismatched data are
revealed as follows.

In CASE I (min{m, p} = 1 systems with d = 1): The
induced one (mt+d)(p+td) = n+d provides no
intersections for pole-assignment in the marginal area
of mp + d(mtp) ~ (m+d)p+d). Meanwhile the
original one mp + d(m+p) = n+d provides complex
or real intersections for pole-assignment.

In CASE II (min{m, p} =1 systems with d > 2): In
the original one mp + d(m+p) > ntd is conser-
vative by amount of @1 in general. Meanwhile the
induced one (m+d)(p+td) 2 ntd+1 provide complex
or real intersections for pole-assignment in non-
conservative way (except m=p=1,d=2).

In CASE 1II (MIMO system with d > 1): The
original one mp + d(m+p) > ntd is conservative by
amount of & (if d = 1) and d*—1 (if d > 2).
Meanwhile the induced one (m+d)(p+d) > n+d and

(m+d)(p+d) = n+d+1 provide complex or real inter-
sections for pole-assignment in non-conservative way.

7. CONCLUSIONS

Major outcomes of this paper are summarized as
follows.

1) It is proved using a lattice diagram analysis that
minimum d-th order dynamic O. F. compensator for
pole-assignment in m-input, p-output, n-th order linear
systems is decomposed into static O. F. compensator
and associated d number of arbitrary 1st-order, strictly
proper or proper dynamic elements in (m-+d)-input,
(pt+d)-output, (n+d)-th order linear systems.

2) From 1), it is clearly revealed that two well-
known necessary and sufficient conditions mp 2 n
as generic static O. F. pole-assignment and mp +
d(m+p) 2 nt+d as generic minimum d-order dynamic
O. F. pole-assignment on complex field & do not
match up each other in strictly proper linear systems.
Total configuration of the mismatched data is
presented in Table 1.

Further studies. From the mismatched data in 2),
following questions are naturally occurred as future
issues:

3) Is the well-known strong sufficient condition of
generic static O. F. pole-assignment on real field <
mp > n to be the sufficient condition of complete
static O. F. pole-assignment in strictly proper systems,
combining with the full-rank condition of the Pliicker
submatrix of Grassmann invariant L ? — vice versa, is
the (mtd)(p+d)>n+d or (m+d)(ptd) > ntd+1 to
be the sufficient condition of complete minimum d-th
order dynamic O. F. pole-assignment on < in strictly
proper systems, combining with full-rank condition of

Table 1. Total configuration of mismatched data in generic pole-assignabilities.

. » . induced N and S condition on i
original N and S condition on (m+d)(pt+d) > ntd+1; d>2
mp +d(m+p) 2> n+d (m+d)(pt+d) > nt+d; d=1
d=1 non-conservative empty setin n=4
SISO systems d=2 conserv. by d°—3 empty setin n=26
(m=1,p=1) d=3 conserv. by &> -2 none (empty set)
dz4 conserv. by d*—1 none
d=1| p>2 non-conservative empty setin n=2p+l
SIMO systems | d=2 | p=2 conserv. by d*—1 none
(m=1,p=2) p=3 conserv. by d°—1 none
d>3| p=2 conserv. by d*—1 nonc
d=1| m=2 non-conservative empty setin n =2m+1
MISO systems | d=2 | m=2 conserv. by d*—1 none
m=22,p=1) mz23 conserv. by d*—1 none
d23 | m>2 conserv. by d&° - 1 none
d=1 conserv. by d none
MIMO systems d=2 conserv. by Y F—1 none
(nondegenerate) d>3 conserv. by d’— 1 none




Mismatching Problem between Generic Pole-assignabilities by Static Output Feedback and Dynamic ... 67

the Pliicker submatrix of dynamic Grassmann
invariant L*® ?

4) Is the Grassmann invariant L to be a complete
invariant (or a canonical form) under static O. F.
group action for system poles ? — vice versa, is the
dynamic Grassmann invariant L“% to be a complete
dynamic invariant (or a canonical form) under
minimum order dynamic O. F. group action for system
poles[13,14]?

APPENDIX A
Proof of Lemma 2: Consider arbitrary 1st order
dynamic elements located in a diagonally descending
d-crossed minimal position like Fig. A.1
(where IdXd(eI, ..., ): the interacting-factor column
formulated by all dynamic elements e;(s), ..., e/ s),
{IdXd(Gi,», €1y eer s €y €hils o.. , €9)}:  the set of inter-
acting-factor columns formulated by the elements
Gi(s), ei(s), ... , eni(s), enr1(5), ... , efs) for h=
2,...,d-1, and i=1,...,m and j=1,...,p,
(@G ey, .., eq)}: the set of interacting-
factor columns formulated by the elements Gy(s),
ei(s), ... ,eqds) for i=1,...,m and j=1,...,
p)

Hence let the strictly proper dynamic elements be
el(s) = Usta)) (= ni()/Do.8(s)), ... , eds) =
1/(s+ay) (= nids)/Do.;"*(s)) and transfer function
elements be G(s) = ny(s)du(s), ... , Gupls) =
Np(S)/dmp(s)  (where ny(s)/di(s) are irreducible
without common factors for all / and j, and (s+a;),
.o > (stay) are relatively prime over nyu(s), ... ,
nmp(s); a; * aj)

Then possible intrinsic column rank reductions
“by dynamic elements” need to be checked in
following 3 parts from the construction algorithm in

(11).

1) Linear dependency between -ny, ... ,-nq and
]dXd(eI, ey ed).
[ Gifs) - Gl 0 0 ]
: '!____: ________________
G(S)SFGaug — Gm](S) ) 1 Gmp(S) ____O_ _____
0 : 01 els)
Lt |
IV
0 64 O
= | Y S 4
= '_/i .........
IdXd(Gmp, (55 ed_j) IdXd(e], . ed)
](d+1)X(d+l)(Gmp’ €15 onny ed)

Fig. A.l1. Augmented transfer function matrix and 3
kinds of interacting factors.

(i) d =2 case: From Fig. A.1 and (11), following
linear and nonlinear interacting terms are
obtained.

-np - di(s)(s+a)Dgys) (= - (s+az) Do " (s),
i.e., dys)Dgy(s) = Do..““(s) for all i and ),
-nyt - d(s)s+a)Dg(s) (= - (s+ap) Do "(s)),

P(er,e2): difs)Dyp(s) (= Do (s)).
Hence column rank is reduced by “1”, because
the - n; - (-n) and I are linearly dependent.

(ifyd > 3 case: The linear dependency between

-ng ..., -ng and ey, ..., ey is not
found.
2) Linear dependency between {IdXd(Gij, €l oeey Chl,

epirs .. ey and {ICENG e, L e}

(i) d = 2 case: From (11), following nonlinear
interacting terms are obtained,

PGy, e myls)(s+anDys),

PGy e ny(s)(s+a)Dy(s),

F(Gy, en, €2): - ny($)Dg(s)
Hence column rank is reduced by “17, because
PGy, e2) — PGy, e) and I(Gy, e, e5)
are linearly dependent for all i and j.

(#)y d > 3 case: The linear dependency between
{IdXd(Gij, €1, oo 5 €nly Chtly e, Ed)} and {1
(d”)x(d”)(Gij, e, ..., eq)} is well found, and the
column rank is reduced by |d/2] over each
Gy(s) because any two interacting-factor
columns I”*(Gy, e,) — "(Gy, eb) and P(Gy,
€4, ¢p) are linearly dependent for all i and j,
and forall @, b =1, ...,d: a#b (where | x/
indicates the nearest integer lower than or equal

to x).
3) Linear dependency between {I“*N"*@™N-1(nyN
Minor, ey, ... , €1, €l ... , eq)} and {1 @VEN

(NxN minor, ey, ... ,e4)}.

(/) d = 2 case: In the same way of 2), column
rank is reduced by “17, because [V
(NxN minor, e5) and I'' ™" N(NxN minor, e;)
and 1@V N(NxN minor, e;, ;) are linearly
dependent for all N=2, ...,z (£ min{m, p}) in
G(s)5C .

(i) d > 3 case: In the same way of 2), column
rank is reduced by |.d/2]) over each NxN minor
in G(s)SF ¢ because any two interacting-factor
columns "NV V(NKN  minor, e and
JTXNNYN minor, ey) and 17V ™ N(NxN
minor, e,, e,) are linearly dependent for all N
=2,...,z(Emin{m, p}), and for all a, b =1,

..,d; a#bh.
From 1) - 3), the column rank of Pliicker submatrix
is reduced by 1 + [(mp)" + X NxN minor] - |d/2]
(where (mp)A (£ mp) indicates actual number of
nonzero transfer functions and N = 2, ... , z (<
min{m, p}). a
Proof of Lemma 3: (We shall prove in the same
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manner as the Lemma 2, setting e;(s) = (s+5)/(s+a;)
(= n/(8) Do), ... , eds) = (s+B)/(s+ay) (=

na(8)/ Do ™(s)), where (s+a;), ... , (s+a,) are
relatively prime over n;/(s), ... , Bmp(s), and (s+5;),
... , (s+f) are relatively prime over d(s), ... ,

du); % 1),

1) Linear dependency between
and - L,%%ey, ..., e)).

(i) d=2 case: From Fig. A.1 and (11), following
linear and nonlinear interacting terms. are
obtained,

“np - dy(S)s+an)sHADD(s)

(= - (s+a2)(s+B1) Do..(5))s
-ny - dy(S)(st+an)(s+B)Dy(s)
(= - (s+a))(s+/2) Do.."(s)),

e, e2): di(s)D(s) (=Do.."(s)) .
Hence column rank is not reduced, because the
- n; - (- ny) and I7(e;, e;) are linearly
independent.

(ii) d =2 3 case: The linear dependency by linear
column operations between {IdXd(G,-j, e, ..., el

-y, ... , = Ny

enil, ... » €g)y and {I(d”)X(dH)(Gij, e, ..., e} is
not found by relative primeness of (s+ay), ...,
(s+ay) and (s+51), ... , (s+).

2) Linear dependency between {I"(Gy, ey, ... , €1,
enins .. eq)} and {(IEVENG e, . ea)).
({)d=2case: From Fig. A.1 and (11), following

terms are obtained,
PGy et my(s)s+an)(s+B)D(s),
PGy, e ny(s)(s+aa)(s+B)Dy(s),
PGy, e, e - ny(s)Dy/(s) -
Hence column rank is not reduced, because
PGy, e3) — PGy, e)) and I7(Gy, ey, e5)
are linearly independent for all i and
under any linear column operations.
(i) d = 3 case: The linear dependency between
{IdXd(G,-j, €l «or > Chls Chils ... , €9)} and {{
@@ (G, ey, ... , eq)} is not found, because
IdXd(G,'j, €1y vov 5 Chly il ool ed) —IdXd(G,'j, e,
el ety e s eq) and {(ICPTN(G e,
., eg)} are linearly independent for all i, j
and forall d=3,...,d where A=+t under
any linear column operations.

3) Linear dependency between {I(‘HN IXAND NN
Minor, €j, ... , €1, €p+ls - » €4)} and (@@
(NxN minor, ey, ... , eg)}. In the same way with
the proof of 2), the linear dependency is not found
for all i, j and for all d = 3, ... , d under any
linear column operations.

From 1) — 3), the column rank of Pliicker submatrix is
not reduced by proper dynamic elements. r

Proof of Lemma 4: If 4 =1, then from Fig. A.1,
the I"(e;) indicates the numerator column

formulated by a dynamic element e;(s), and {I"*(G;,

e;)} indicates the interacting-factor column form-
ulated by e,(s) and a transfer function Gy(s).

And let the strictly proper dynamic elements be
ei(s) = Bil(sta;) (= ni(s)/Do.1(s)), and the transfer
function elements be Gys) = ny(s)/dy(s) (where
ni(s)/d;(s) are irreducible without common factors for
all i and j, and (s+¢;) are relatively prime over all
n;(s) and dy(s)). Then the possible intrinsic column
rank reductions by the strictly proper dynamic
elements “do not exist” by relative primeness of
(sta;) overall ny(s) and di(s). r

APPENDIX B
If W is any nonzero m-dimensional subspace of V,
then any nonzero decomposable element (in the
exterior product of m vectors in W), x; A
x; e W, i=1, ..., m
representative for W.

A X,
is called a Grassmann-

APPENDIX C

Let M be a a x b matrix in field F, then column
rank of M is defined by the maximum number of
linearly independent columns of M, and the row rank
of M is defined by the maximum number of linearly
independent rows of M. Actually, these two ranks of a
a x b matrix are always equal, and rank of a a x b
matrix is defined by that number of the two ranks.
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