DOI QR코드

DOI QR Code

Ferromagnetic Domain Behaviors in Mn doped ZnO Film

  • Soundararajan, Devaraj (Department of Physics, Yeungnam University) ;
  • Santoyo-Salazar, Jaime (Centro de Investigacion y de Estudios Avanzados de Instituto Politecnico Nacional, Departamento de Fisica, Av. IPN) ;
  • Ko, Jang-Myoun (Division of Applied Chemistry and Biotechnology, Hanbat National University) ;
  • Kim, Ki-Hyeon (Department of Physics, Yeungnam University)
  • Received : 2011.08.18
  • Accepted : 2011.09.15
  • Published : 2011.09.30

Abstract

Mn doped ZnO films were prepared on Si (100) substrates using sol-gel method. The prepared films were annealed at $550^{\circ}C$ for decomposition and oxidation of the precursors. XRD analysis revealed the presence of ZnMnO hexagonal wurtzite phase along with the presence of small quantity of $ZnMn_2O_3$ secondary phase and poor crystalline nature. The 2D, 3D views of magnetic domains and domain profiles were obtained using magnetic force microscopy at room temperature. Rectangular shaped domains with an average size of 4.16 nm were observed. Magnetic moment measurement as a function of magnetic field was measured using superconducting quantum interference device (SQUID) magnetometry at room temperature. The result showed the ferromagnetic hysteresis loop with a curie temperature higher than 300 K.

Keywords

References

  1. F. V. Kyrychenko and J. Kossut, Physica E. 10, 378 (2001). https://doi.org/10.1016/S1386-9477(01)00120-5
  2. K. Takabayashi, N. Takahashi, I. Yagi, K. Yui, I. Souma, J. X. Shen, and Y. Oka, J. Lumin. 87, 347 (2000). https://doi.org/10.1016/S0022-2313(99)00371-3
  3. L. Parthief, S. Luthef, O. Portugall, M. von Ortenberg, K. Uchidab, H. Kunimatsub, and N. Miurab, J. Cryst. Growth 184, 339 (1998).
  4. H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, App. Phys. Lett. 69, 363 (1996). https://doi.org/10.1063/1.118061
  5. H. Saito, S. Yamagata, and K. Ando, J. Appl. Phys. 95, 7175 (2004). https://doi.org/10.1063/1.1687255
  6. D. Soundararajan, D. Mangalaraj, D. Nataraj, L. Dorosinskii, J. Santoyo-Salazar, K. Senthil, and J. M. Ko, Sci. Adv. Mater. 3, 1 (2011). https://doi.org/10.1166/sam.2011.1136
  7. D. Soundararajan, D. Mangalaraj, D. Nataraj, L. Dorosinskii, J. Santoyo-Salazar, and M. J. Riley, J. Magn. Magn. Mater. 321, 4108 (2009). https://doi.org/10.1016/j.jmmm.2009.08.012
  8. P. T. Chiu and B. W. Wessels, Appl. Phys. Lett. 90, 207202 (2003). https://doi.org/10.1103/PhysRevLett.90.207202
  9. K. Ueda, H. Tabata, and T. Kawai, Appl. Phys. Lett. 79, 988 (2001). https://doi.org/10.1063/1.1384478
  10. T. Fukumura, Z. Jin, M. Kawasaki, T. Shono, T. Hasegawa, S. Koshihara, and H. Koinuma, Appl. Phys. Lett. 78, 958 (2001). https://doi.org/10.1063/1.1348323
  11. A. Tiwari, C. Jin, A. Kvit, D. Kumar, J. F. Muth, and J. Narayan, Solid State Commun. 121, 371 (2002). https://doi.org/10.1016/S0038-1098(01)00464-1
  12. S. W. Jung, S. J. An, G. Yi, C. U. Jung, S. Lee, and S. Cho, Appl. Phys. Lett. 80, 4561 (2002). https://doi.org/10.1063/1.1487927
  13. D. P. Norton, S. J. Pearton, A. F. Hebard, N. Theodoropoulou, L. A. Boatner, and R. G. Wilson, Appl. Phys. Lett. 82, 239 (2003). https://doi.org/10.1063/1.1537457
  14. K. R. Kittilstved, N. S. Norberg, and D. R. Gamlin, Phys. Rev. Lett. 94, 147209 (2005). https://doi.org/10.1103/PhysRevLett.94.147209
  15. M. Diaconua, H. Schmidta, H. Hochmutha, M. Lorenza, G. Benndorfa, D. Spemanna, A. Setzera, P. Esquinazia, A. Poppla, H. von Wencksterna, K.-W. Nielsenb, R. Grossb, H. Schmidc, W. Maderc, G. Wagnerd, and M. Grundmanna, J. Magn. Magn. Mater. 307, 212 (2006). https://doi.org/10.1016/j.jmmm.2006.04.004
  16. P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. Osorio Guillen, B. Johansson, and G. A. Gehring, Nature Mater. 2, 673 (2003). https://doi.org/10.1038/nmat984
  17. M. Diaconu, H. Schmidt, H. Hochmuth, M. Lorenz, G. Benndorf, J. Lenzner, D. Spemann, Setzer, K.-W. Nielsen, P. Esquinazi, and M. Grundmann, Thin Solid Films 486, 117 (2005). https://doi.org/10.1016/j.tsf.2004.11.211
  18. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000). https://doi.org/10.1126/science.287.5455.1019
  19. F. Gu, S. F. Wang, M. K. Lu, G. J. Zhou, D. Xu, and D. R. Yuan, Langmuir 20, 3528 (2004). https://doi.org/10.1021/la049874f
  20. D. Kundaliya, S. Ogale, S. Lofland, S. Dhar, C. Metting, S. Shinde, Z. Ma, B. Varughese, K. Ramanujachary, L. Salamanca-Riba, and T. Venkatesan, Nature Mater. 3, 709 (2004). https://doi.org/10.1038/nmat1221
  21. M. H. Ham, S. Yoon, Y. Park, and J. M. Myoung, Appl. Surf. Sci. 252, 6289 (2006). https://doi.org/10.1016/j.apsusc.2005.09.012
  22. Li Zeng, A. Huege, E. Helgren, F. Hellman, C. Piamonteze, and E. Arenholz, App. Phys. Lett. 92, 142503 (2008). https://doi.org/10.1063/1.2908050
  23. Y. Q. Chang, D. B. Wang, X. H. Luo, X. Y. Xu, X. H. Chen, C. P. Chen, R. M. Wang, J. Xu, and D. P. Yu, Appl. Phys. Lett. 83, 4020 (2003). https://doi.org/10.1063/1.1625788
  24. L. Ying-Bin, L. Zhi-Hai, Z. Wen-Qin, L. Zhong-Lin, X. Jiang-Ping, J. Jian-Ti, L. Xing-Chong, W. Jian-Feng, L. Li-ya, Z. Feng-Ming, D. You-Wei, H. Zhi-Guo, and Z. Jian-Guo, Chinese Phys. Lett. 24, 2085 (2007). https://doi.org/10.1088/0256-307X/24/7/082
  25. S. J. Pearton, W. H. Heo, M. Ivill, D. P. Norton, and T. Steiner, Semicond. Sci. Technol. 19, 59 (2004). https://doi.org/10.1088/0268-1242/19/10/R01