• Title/Summary/Keyword: Receding horizon

Search Result 97, Processing Time 0.022 seconds

Nonlinear Model Predictive Control for Multiple UAVs Formation Using Passive Sensing

  • Shin, Hyo-Sang;Thak, Min-Jea;Kim, Hyoun-Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.16-23
    • /
    • 2011
  • In this paper, nonlinear model predictive control (NMPC) is addressed to develop formation guidance for multiple unmanned aerial vehicles. An NMPC algorithm predicts the behavior of a system over a receding time horizon, and the NMPC generates the optimal control commands for the horizon. The first input command is, then, applied to the system and this procedure repeats at each time step. The input constraint and state constraint for formation flight and inter-collision avoidance are considered in the proposed NMPC framework. The performance of NMPC for formation guidance critically degrades when there exists a communication failure. In order to address this problem, the modified optimal guidance law using only line-of-sight, relative distance, and own motion information is presented. If this information can be measured or estimated, the proposed formation guidance is sustainable with the communication failure. The performance of this approach is validated by numerical simulations.

Receding horizon LQG controller with FIR filter

  • Yoo, Kyung-Sang;Shim, Jae-Hoon;Kwon, Oh-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.193-196
    • /
    • 1992
  • When there exist parameter uncertainty, modelling errors and nonminimum phase zeros in control object system. the stability robustness of conventional LQG and LOG/LTR methods are not satisfactory[2, 8]. Since these methods are performed on the infinite horizon, it is very hard to establish exact design parameters and thus they have lots of problems to be applied to real systems, So in this paper we propose RHLQG/FIRF optimal controller which has robust stability against parameter uncertainty, nonminimum phase zeros and modelling errors. This method uses only the information around at present and therefore shows good performance even when we do not know exact design parameters. We here compare LQG and LQG/LTR method with RHLQG/FIRF controller and exemplify that RHLQG/FIRF controller has better robust stability performance via simulations.

  • PDF

An Optimal FIR Filter for Discrete Time-varying State Space Models (이산 시변 상태공간 모델을 위한 최적 유한 임펄스 응답 필터)

  • Kwon, Bo-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.12
    • /
    • pp.1183-1187
    • /
    • 2011
  • In this paper, an optimal FIR (Finite-Impulse-Response) filter is proposed for discrete time-varying state-space models. The proposed filter estimates the current state using measured output samples on the recent time horizon so that the variance of the estimation error is minimized. It is designed to be linear, unbiased, with an FIR structure, and is independent of any state information. Due to its FIR structure, the proposed filter is believed to be robust for modeling uncertainty or numerical errors than other IIR filters, such as the Kalman filter. For a general system with system and measurement noise, the proposed filter is derived without any artificial assumptions such as the nonsingular assumption of the system matrix A and any infinite covariance of the initial state. A numerical example show that the proposed FIR filter has better performance than the Kalman filter based on the IIR (Infinite- Impulse-Response) structure when modeling uncertainties exist.

NMPC-based Obstacle Avoidance and Whole-body Motion Planning for Mobile Manipulator (모바일 매니퓰레이터의 NMPC 기반 장애물 회피 및 전신 모션 플래닝)

  • Kim, Sunhong;Sathya, Ajay;Swevers, Jan;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.359-364
    • /
    • 2022
  • This study presents a nonlinear model predictive control (NMPC)-based obstacle avoidance and whole-body motion planning method for the mobile manipulators. For the whole-body motion control, the mobile manipulator with an omnidirectional mobile base was modeled as a nine degrees-of-freedom (DoFs) serial open chain with the PPR (base) plus 6R (arm) joints, and a swept sphere volume (SSV) was applied to define a convex hull for collision avoidance. The proposed receding horizon control scheme can generate a trajectory to track the end-effector pose while avoiding the self-collision and obstacle in the task space. The proposed method could be calculated using an interior-point (IP) method solver with 100[ms] sampling time and ten samples of horizon size, and the validation of the method was conducted in the environment of Pybullet simulation.

Closed-loop predictive control using periodic gain

  • Lee, Young-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.173-176
    • /
    • 1994
  • In this paper a closed-form predictive control which takes the intervalwise receding horizon strategy is presented and its stability properties are investigated. A slate-space form output predictor is derived which is composed of the one-step ahead optimal output prediction, input and output data of the system. A set of feedback gains are obtained using the dynamic programming algorithm so that they minimize a multi-stage quadratic cost function and they are used periodically.

  • PDF

A robust generalized predictive control which guarantees $H_{\infty}$ norm bounds ($H_{\infty}$노옴조건을 만족하는 강인한 일반형예측제어기)

  • 이영일;김용호;권욱현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.556-559
    • /
    • 1996
  • In this paper, we suggest a H center .inf. generalized predictive control(H center GPC) which guarantees $H_{\infty}$-norm bounds. THe suggested control is obtained by solving the min-max problem in nonrecursive forms. The stability conditions of the suggested control are derived in a somewhat simple form and it is not required for the derived solution to be a saddle point solution. It is also shown that the suggested control guarantees the $H_{\infty}$-norm bounds under the same conditions of stability.

  • PDF

Input Constrained Receding Horizon H$_{\infty}$ Control: Quadratic Programming Approach

  • Lee, Young-Il
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.2
    • /
    • pp.178-183
    • /
    • 2003
  • This work is a modified version of an earlier work that was based on ellipsoidal type feasible sets. Unlike the earlier work, polyhedral types of invariant and feasible sets are adopted to deal with input constraints. The use of polyhedral sets enables the formulation of on-line algorithm in terms of QP (Quadratic Programming), which can be solved more efficiently than semi-def algorithms. A simple numerical example shows that the proposed method yields larger stabilizable sets with greater bounds on disturbances than is the case in the earlier approach.

ADAPTIVE PREDICTIVE CONTROL USING RHPC FOR ELECTRIC FURNACE

  • Kim, Jin-Hwan;Huh, Uk-Youl
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.22-25
    • /
    • 1995
  • This paper shows adaptive control using RHPC(Receding Horizon Predictive Control) with equality constraint which applied to Electric Furnace. The control strategy includes monotonic weighting (improving transient response) and pre-filtering (enhancing robustness), which is effective on real process. We can observe the performance of RHPC and confirm the practical aspect of RHPC with unmodelled dynamics through the experiment of Electric Furnace. Finally, this paper verifies the feasibility of RHPC to real process.

  • PDF

Burnthrough point control for a sintering process (소결공정에서의 완전소결점 위치제어)

  • 권욱현;고명삼;백기남
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.216-224
    • /
    • 1986
  • This paper treats the modelling and the control of the burnthrough point control system for an industrial sintering process. First, a state-space model is derived by defining new unconventional variables. A simple control law is proposed, which consists of the modified receding horizon control law and the least-squares prediction algorithm. The stability and the tracking properties of this control law are proved. The real-time experiments are carried out in a POSCO sintering plant and satisfactory results are presented in this paper. Before the real-time experiments, computer simulations are done and their results are also given for the comparison with the real-time experiments.

  • PDF

A Study on Burnthrough Point Control in Sintering Process (소결공정에서의 완전 소결점 위치 제어에 관한 연구)

  • Lee, Sang-Jeong;Kim, Jeom-Geun;Go, Myeong-Sam;Gwon, Uk-Hyeon
    • Proceedings of the KIEE Conference
    • /
    • 1985.07a
    • /
    • pp.55-60
    • /
    • 1985
  • A state-space model of a burn through point control system of an industrial sintering process is derived. The model is then used in designing a self-tuning controller which consists of the receding horizon control law and a least-squares prediction algorithm. By applying this adaptive controller to POSCO sintering process IV, satisfactory expermental results have been obtained. Some of these practical results are presented in this paper.

  • PDF