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Abstract : In this paper, we suggest a Ho generalized predictive control{HooGPC) which guarantees H

%-norm bounds. The suggested control is obtained

by solving the min-max problem in nonrecursive

forms. The stability conditions of the suggested control are derived in a somewhat simple form and it

is not required for the derived solution to be a saddle point solution. It is also shown that the
suggested control guarantees the Hec-norm bounds under the same conditions of stability.
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1. Introduction

The control methods of GPC[1] has received a wide
acceptance in the process industries because of their good
performance and insensitiveness to model-plant mismatch. In
these days, the equivalence of GPC to some state-space
model based design methods such as receding horizon
control(RHC) is well known[3]. Using the terminal equality
constraint in RHC[2], some stability results of GPC are
obtained[4]. In some cases, the stability properties were
investigated using the cost monotonicity[5].

Robustness is another important issue of GPC. There are
some results on improving the robustness of GPC by
parameter tuning via closed loop system analysis[6]. This
approach mainly utilize simulation results to analyze the
robustness properties. For the case of RHC, m the very
recent years, there have been an attempt to construct a
receding horizon Hoe control for discrete linear systems and
analyze its properties[9].

In this paper, we suggest a robust GPC(RGPC) which
guarantees Hoo-norm bounds for SISO systems and obtain
some stability conditions of it. The original form of this
RGPC was first proposed in [8]. In [8], however, there is no
analysis on stability and norm bounds. The solution of the
suggested Heoo control is given in one-shot forms, and its
stability property of the suggested control is examined by
checking the monotonicity of the cost function. The fact that
the $H\infty$ norm bound from disturbance to output is
guaranteed with this control also can be shown based on the
cost monotonicity.

2. Problem Formulation

Consider a linear time invariant system described by

Alg Yy = B(a Ddu(t—1)+Cla ()
where
Ale™) = lt+aiqg '+ +aae " (1)
Bla™") = by+big '+ tbag "
Qg™ = l+ea 4 tem?

¢ 'is the unit delay operator, Jdu(f) and (f) are the
change of the control input and the system output at time ft,
respectively, w(f) is an uncorrelated and zero mean
disturbance on the system which must be taken into account.
In this paper, C(g ') is assumed to be | and #n2m.. In
oder to derive a GPC formulation for the system (1) which
guarantees Hoo-norm bounds, we consider the following cost
function:

_ . N R
JCu, w,) = gl(()’(fﬂL -y lt+ D)
FAdu(t+ i 1) - Fa(t+ D)) 2

N+Ng

+ 3 QYU N) (4 9)F
where
= Al ) Dl A N-1D), w=[a(t+]) w(t+N)] and

y(i+4t+Nis the prediction of the output y({+4) which is
made at time t+N. It is assumed that
du(t+i)=0,j=N,N+1,»-. We would like to find the
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optimal #z, which minimizes J, while o, tries to maximize it

as the following equation:

min max - =
- = I u wy) (3)
u; w,;
given the command signals v, (i+1), y,(t+2),
oy (t+N+Ng). Assuming  that i}',, @, are
minimizing and maximizing solutions, respectively, the

following inequality is satisfied for any 5;:
JC w e w)SI0 ©, @), @)

then feeding the optimal control sequence 7 (f) to the

system during [t, t*N-1] guarantees

o N
2 () -yt < X Fult+d)?

(5)
+ Ji( uif. w )
where
jt( ;‘1, ;1) = ]1( ;1, 5‘.')"'/1 ;‘r' ;‘x
N+ N

=%, QyG+ts N =y, (1))

It can be easily shown that J( ;‘,‘ w . is zero with zero
initial condition, and the inequality (5) says that the induced
norm from ® to y -y, is bounded by 72 during the finite
horizon with the control w e

In this paper, we will consider the case in which only the

first element of u ; is applied at time t, at the next time

t+l, ;.,H is obtained for the receded future horizon and

the same procedure is repeted. This strategy is the same as
that of GPC, which is called the receding horizon strategy.

3. Ho GPC

$t$, the future
y(it+7), 7=1,2,*,N can be calculated as follows under the
du( ) and w(:-),
during the horizon [t, t+NJ], are determined as follows,

Wi+) = gla Ddu(t+i-1)

At the present time system output

assumption that the future values of

(6)
+d(q Ne(t+)+fs,

ga™") and dg ') are polynomials of g ' of
fri=ala (O +b(a Hdu(d and

of orders n and

where
order -1,
afa™"), b{g™") are polynomials of ¢!
m, respectively. The coefficients of the above polynomials can
be obtained recursively or by diophantine

equation{1]{7]. Thus, for the horizon [t+I, t+N], the future
system outputs can be written in a vector form as follows.

solving a

yi=Gy u+ Dy @t F oy v+ F oy )
where

yi= [yt + D)+ NT, ye={38 - wWt--n+1)], and

e [ du(t—1) - Ju(t- m)] and

£ 0 e d, 0 e 0

£ £ o 0 dl dO e 0
17 [)] =

. H e ) 0

EN-1 EN-2 " B

a,, a

Q31 Q2 °* 42
F= ‘ Flu=

any anz "t A bni bnz " Dum

The elements &; d; a,; and b,; are the i“coefficients of
ga . dla . afa ™
output Wet+At+Ny, j=N+1,--.N+Ng is
obtained from Equation (6), assuming that w({+N+7)=0,

du(t+N+j-1)=0 for j=1,2,--, and it can be written in
a vector form as follows:

and b/(¢ "), respectively. The

prediction

y,‘N:GQ ;,‘i‘Dg 51+F3y .2!+F2uu-! (8)
where  yonx=[ ¥(t+ N+ 11+ Ny y(t+N+Nelt+M]°, and
£, £, &
£ .. £, " &
(;2 -
g N+ Np., g N+Nrg g Ny
d, d, - d
d .. d, -~ dy
Dzi
d NENg, d N+Npy e d Ny
a N+l T a N+1,2 ot a N+l n
a N+2,1 a N+2.2 o a N+Zn
FZy =
a N+Nr, a N+Nyy o a N+Nr,
b N+1 1 b N+1,2 ‘ N+l,m
b N+2) b N+2.2 o b N+ m
FEu =
N+Npy b N+ Npy o N+Nrao

Equations (7) and (8), can be combined as follows!
Y=Gu+Dw+F, w+F, u, @

y . .G=1G G'T.D=[D/ DT,
qu‘]"

where Y,=[ v’

F,=[Fy F, 1. F,=[F. Using Equation (9),



the cost (2) can be rewritten as:
]x( ;h ar) = ( ?l_ 7“)'6( 71_ ?r.t)

- . (10)
+A u u,—7 w, w
where
?7.1:[ ;lr.x’ ;ZV.I']'~ ;lr.l:[yy(t+1) "'yt(t+M]‘,
Yoau=[y,(t+N+1) -y{t+N+NpY, and

Q= diag{ly @Iy} Then, the maximizing disturbance

5,.( u,) is obtained by differentiating J, in Equation (10)

with  w, as follows:
w (u) = (FI-DQD) "'D'Q
_ B (11)
. (Gu,+Fy 11+Fu U — Yr,t)'
‘ 3’ - .
provided 3w =2(D' QD—y*D<0. When the disturbance
‘2

w, takes the value as Equation (11), the minimizing control

sequence U, can be obtained by differentiating
J uy, w: ( up) with u, as follows:
u' = {A+G(Q+QDQ'D'QG) !
cG(Q+ QDD Q) 12)
(Y= Fy wtFu ),
where Q=71-D'QD. 1t should be noted that
GZL ;,2>0. which means that (12) is the minimizing

a
solution. Equation (12) contains control inputs for the future
N times, and only the first one is fed to the system. At the
next time t+l, the same procedure is repeated. Manipulating
(12) with the matrix inversion lemma, a minimizing solution
with infinity Q can be obtained. In this case, however, the

condition (D' @QD—¥*D<0 can not be met with finite 7, and
it has no practical meaning.

4. Stability and Hoc—-norm bound

In this section, we consider the conditions of stability and
Hoo-norm bound of the system when the control (12) is
applied to the system in the receding horizon manner. First,
we will examine the stability of this control by checking the
monotonicity of the cost function. Although the optimal values
(11) and (12) may not be a saddle point solution, we can
obtain the following inequalities:

I w” @)<I w" @ w) < I u, @ (u)). (13)
Before we propose a theorem regarding the stability of the
control (12), using relation (13), we define some notations for
briefness of description.

N=Nr=n and

we assume that

Yin=[ yU+N+1t+ N)

From now on,

<« y(t+N+Ngt+N)]' is made under the assumption that

du(t+5)=0, j2N while v, x=1[y((+N+2t+ N+1)
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e y({+N+Npg+1jt+N+1)]° is made under the assumption

that du(i+)=0, j2N+1 with du(t+N)=-K y,n for

some vector K of adequate dimension. First, consider the

relations between yin and ¥4 n. Under the conditions

above mentioned, we can obtain:
y A Y ntBAu(t+N)

YerlN T
_ (14)
= (A—BK) y.n
where
0 1 0
£
0 0 0
£2
A= B=
0 0 1
g'l
Ay Tyt Ta

Note that the inverse of A exists if a,#0. If a disturbance

vector EM is applied to the system during the horizon
[t+1, t+N+1], the system output y(t+1+N) is given as:

WE+1+N) JU+L+MI+ N

+g,du(t+N)+dow(t+N+1) (15)

g vinto(t+N+1)

where g=[1 0 --0]—g£K. Based on the relations above

mentioned, we can state a theorem about the stability of the
control (12).

Theorem 1. Consider the system (1). For N= Ng= nthe
control (12) stabilize the closed loop system when it is
applied in the receding horizon manner provided:
#1-D;-D)>0 (16)
(I-(A—-BK)'(A—BK))
(17

—Q 'K K+£(1+ (¥ -1 He)=0.

Proof:
assume that y,(:)=0 and the control (12) is applied to the

Since we are concerning the closed loop stability, we

system (1) with w(f)=0. Let ;,‘i[u'x,o Wy iy na)

and ;[ ( ;[ ): [ w!,l.( ;! ) °* wf.N‘ (;t)] are the
minimizing and maximizing solutions of J,, respectively, and

-

{2’y Moy Bu'yny —K yoal,

Ui+ =
w1=00 @ @h20%ana]. Then, from the
properties of Equation (13), we get:
JC up wpCoup)

270 up @ ( umy)
(18)

2y(1+1)2+ A du'y’

+J 1w @ C ) R,



where R=Q( y:n vin— YN Yrw— (&8 yun

+ @l ;Hl))2+72 w' +1.N %)t A ;:.N'K'K ;I.N-
If R, is shown to be nonnegative, then inequality (18)
implies that y(t+1) and Jdu({) converges to zero as £—>o0,
since J;(*) is nonnegative and bounded below. Thus, it is
left to show that under the condition (17), R, is guaranteed

to be nonnegative.
From relation (14):

Ri= yniQU-0®)—AKK Y5
P 0N — Y&+ (AI-1D g Yon
P @ - DR,
where 2, = 'y v~ (#*1-1) & Y, v and = A~ BK.
R>0
|

From the above relation, we can conclude that

provided the conditions (16)-(17).
It is left for us to show that the Hoo-norm(=induced
2-norm) is bounded when control (12) is used in the receding
The following theorem says that RGPC
guarantees the Hoo-norm bounds under the same condition of
Theorem 1. The proof is also based on the monotonicity of
cost function and is omitted here.

horizon manner.

Theorem 2. When the control (12) is applied to the system
(1) in the receding horizon manner and the conditions (16)

and (17) are met, the H-norm(induced 2-norm) from o to

y is bounded by 7-. [ ]

From the above two theorems, we can say that RGPC
stabilizes the closed loop system while guaranteeing the H™
(16) and (17). These
conditions are sufficient conditions for closed loop stability

norm bounds under the conditions

and norm bounds.

5. Conclusions

In this paper, we obtained H> GPC solution in one shot
form for SISO systems using game theoretic approach. Some
conditions for guaranteed stability and Hec-norm bounds of
RGPC were derived. The analysis of stability and norm bound
was carried out by
functions and it is not required for the solutions to be saddle

examining the monotonicity of cost

point solutions. Although SISO systems are considered in this
paper,
synthesis of this paper can be easily extended to MIMO
systems and state-feedback cases. It is also expected that the
conditions (16) and (17) can be changed in another form so
that stabilizing pairs of A and Q be
systematically via LMI approach.[11].

it is expected that the methology of analysis and

obtained

can
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