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Abstract
When there exist parameter uncertainty, modelling

errors and nonminimum phase =zeros in control object
system, the stability robustness of conventional LQG and
LQG/LTR methods are not satisfactory(2,8].
methods are performed on the infinite horizon, it is very
hard to establish exact design parameters and thus they

have lots of problems to be applied to real systems. So in

Since these

this paper we propose RHLQG/FIRF optimal controller which
stabilty
nonminimum phase zeros and modelling errors. This method

has robust against parameter uncertainty,
uses only the information around at present and therefore
shows good performance even when we do not know exact
design parameters. We here compare LQG and LQG/LTR method
with RHLQG/FIRF controller and exemplify that RHLQG/FIRF
controller has better robust stability performance via

simulations,

1. Introduction

The LQ controller
parameter variations and model uncertainty because of its
[1].

guaranteed

is known to be robust against

these
the
corresponding LQG control design. The LQG controller may

excellent gain and phase margin However,

excellent properties are not in
become unrobust against parameter variation and model
uncertainty in plant [2],[8]. To improve the robustness of
the LQG controller,

as LQG/LTR{Linear Quadratic Gaussian with Loop Transfer

an asymptotic recovery method, known

Recovery), has been introduced, which recover stability
margins of the corresponding LQ controller or Kalman
filter,
remarkable robustness the LQG/LTR method may suffer from
poor

nonminimum phase system and time-varying systems[8]. Also

It has been recognized that in spite of its

stability property for the parameter variation,
remarkable results have been known that the LQ controller
may acquire far off unstable modes for small variations in
the plant parameter{2]. These findings cast some doubts

practically on the asymptotic recovery, even in the

minimum phase case, since the recovered stability margins
the LQG design all
possible quadratic performance criteria.

cannot guarantee robustness for
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So in this paper we propose a new control method,
named RHLQG/FIRF(Receding Horizon LQG with FIR Filter),
for enhancing the stability robustness to the system
parameter uncertainty modelling error, The
conventional LQG and LQG/LTR method are performed on the
infinite horizon so it is very difficult to estabilish
exact design parameters and thus they have much problems
to be applied to real applications. Hence there are many

and

designer’s interested in solving the problems proposed
here. In this paper we proposed the RHLQG/FIRF optimal
controller which has robust stability against parameter
variation and modelling errors. This control method uses
only the information around at present therefore shows
nice performance even vwhen we do not know exact design
parameters.

Here we analytically shows that the RHC method [4] is
robuster than LQ control method and the FIR filter (3] is
robuster than Kalman filter, respectively, using the FARE
{51.
compare LQG and LQG/LTR with proposed control method and

(Fake Algebraic Riccati Equation) Finally, we here
exemplify via simulation that RHLQG/FIR controller has

better stability robustness,

This paper is organized as follows: In section 2 we
derive RHLQG/FIRF algorithm, In section 3 we show that the
RHC and FIR filter have better robustness than the LQ
controller and Kalman filter,
the of RHLQG/FIRF
simulation and in section 5 the conclusion will be given.

In section 4 we exemplify

robustness algorithm via computer

2. RHIQG/FIRF Algorithm

In this section we shall begin examining design

methods based on optimal control theory ., The particular
theory we shall be concerned with here is that of the

so-called RHLQG/FIRF problem, The problem addressed is the

following: Suppose that we have a plant model in time
varying state-space form

%(t) = Ax(t) + Bu{t) + Gw(t)

y{t) = Cx(t) « v(t) (2.1)



where x(t) is a nxl state vector, u(t) is a mxl system

input vector , y(t) is a Ixl system output vector, A, B
and C are time varying matrices with appropriate
dimensions, and w and v are zero-mean white Gaussian

noises with covariances

Elw(t)wT(s)] = Q &(t-s)
E[v(t)vT(s)) = 1 8(t-s)

(2.2)

It is assumed here that w and v are uncorrelated with
The then to

feedback-control law which minimizes the cost function

each other. problem is devise a

t+Tc
J = EOT(t+Te)Fx(t+Te) + [ [yT(7)Qyy(7) + uT(7)Ruu(7)]d7}
t
(2.3)
where
F20 Q 20and Ry >0
are weighting matrices. It is also assumed that available
informations at present time t are Qy and Ru on the
interval [t, t+Tc] and the measurement data y on the past
[t-Te, t].
The solution to the RHLQG/FIRF problem states that the
optimal result is achieved by the following procedure. The
first subproblem is to find the control law which will

minimize the cost function. The control law is determined

by RHC(Receding Horizon Control) method as following
algorithm:

u(t) = -Ru~1BTK(t, t+Te)R(t|T) := -P(t)R(t|T) (2.4)
where K(t,t+T¢) satisfies the matrix Riccati equation

given by

a
- — K{s, t+Tc)
as

= ATK(s, t+T¢)+K(s, t+T¢ JA+CTQyC-K(s, t+T¢ )BRu~1BTK(s, t+T¢)
tss<t+Te (2.5)
K(t+Tc,t+Te) = F (=

o] ) (2.6)

P(t) := Ru-IBTK(t, t+T¢)
and R(t|T) is the FIR filter.
The second subproblem is to determine the optimal FIR

filter,
observer as follows:

which is shown to have the structure of a state

t t
R(tIT) = f H(t,m:T)z{T)dr + [ Hu(t,:T)ulT)dt
vt T (2.7)
where the impulse response H(t, - :T) and Hy(t, - :T) are
derived as follows: ’

H(t,siT) = S 1(t, L{t,siT), t-Tssst, Tz Ao (2.8)

a
;L(t.siﬂ) = -[AT+S(t,0)BQBTIL(t,s:0), 0 < T-t+s< 6 < T
(2.9)

10y

L(t,s:T-t+s) = CT
a8
—S(t,0) = -S(t,0)A ~ ATS(t,0) + CTC - S(t,0)BQBTS(t,0)
a0
(2.10)
$(t,0) =0, 0<0sT
S
Hu(t,s:T) = f H(t,:T)C¥(7,s)Gdr, t-T s s st (2.11)
t-T
where Ao in Eq. (2.8) is the observability index and
(-, - ) in (2.11) is the transition matrix of A,

To judge the closed-loop stability of the candidate
method, the stability
condition, which is given by the following theorem:

design we show closed-1oop

[Theorem 2.1] : (Stability of RHLQG/FIRF)

If the system is completely controllable and
completely observable then the RHLQG/FIRF stabilizes the
system with T2 lo and Tc 2 lc , where 1o and l¢ are the
controllability and the observability index, respectively.

[Proof] The closed loop system without noise is given as
follows:

Ax(t) + Bu(t)

Ax(t) - BP(t)R(t|T)

[A-BP(1))x(t) + BP(t)X(t)

e
i H

1

= x(t) - ().
for

vhere %(t) Since the FIRF becomes a
deadbeat the
completely observability [3] the asymptotic stability of
%(t) The
controllability then guarantees the asymptotic stability
of x(t) using the RHC method [4],
proof,

In the case of linear time-invariant systems,
RHLQG/FIRF has
feedback as u(t) = -P%(t|Tf) and the time-invariant state

observer noise free systems under

is guaranteed automatically, complete
which completes the

(0]
the

very simple forms with the constant gain
estimator

T T
R(L|T) = f H(u:T)y{t-1)dr + [ Hu(T: T)u(t-T1)dT,
[ ]

Note that in LQG/LTR the parameter Qy, Ru, Q and R are
but, on the other hand,
information available

design parameters{8] they are

given as a priori in the case of
RHLQG/FIRF,

of receding horizon,

which guarantees the optimality in the sense
RHLQG/FIRF is robuster to
parameter uncertainty than LQG/LTR and LQG as shown later
in this paper.

3. Robustness Analysis of
RHIL.LOG /FIRF

Moreover,

In this section we consider robustness property of RHC
and optimal FIR filter. It will be shown that since RHC
and FIR filter are based on the finite horizon they are
robuster than LQ control and Kalman filter which are based
on the infinite horizon. We prove this analytically here,



To analyse the robustness in frequency domain, we assume

that the plant is time-invariant in this section
3.1, Robustness of the RHC

The LQ controller has been known to have excellent
gain and phase margin in time invariant systems. However
it appears to have very poor performance when applied to
the parameter variation, model uncertainty and time
varying systems. We here compare the frequency domain
robustness of RHC with that of LQ, which shows that RHC

has better robustness than LQ controller

First of all, we introduce the Fake ARE[6,7] for the
frequency domain equality of Eq.(2.5)

{Lemma 3.1] Consider the FARE

Q(s) = K(s, t+T¢)BTRy " 1BK(s, t+Te¢ )-ATK(s, t+Tc)-K(s, t+Tc)A
(3.1)
and assume that

i} {A,B] is a controllable pair
ii) Q(s) 2 0 and [A,Q'/2(s)] is a stabilizable pair

Then RHC feedback law (2.4) asymptotically stabilizes the
plant,

Define Q(s) = Q + K{s,t+Tc). Then Eq.(3.1) comes from
(2.5). The connection between monotonicity of {K(s, t+Tc)}
and stabilizability of [A,Q!/2(s)] then emerges [7]. Note
that it the stabilizability of the pair
[A,Q1/2(s)](when Q(s) 2 0 ) that determines the asymptotic
stability of (3.1), since then K(s,t+Te)
legitimate ARE,

is
satisfies a
oaa

Let us investigate the frequency domain characteristics
of RHC as shown in the following theorem:

[Theorem 3.1] : The return difference matrix Truc(s) of

the system with RHC satisfies the following relation in
the frequency domain:

TrucT{-jw)RuTruc(jw) = Ru + BTET(-jw)qd{jw)B (3.2)
where
8(s) 1= (sI - A)-! and @ = CTQyC + —%; K(T, t+Te) g
(3.3)
aa

The above result comes from the same procedure as that
of LQ controller [8] using the definition (3.3). From
Theorem 3.1 we intuitively recognize that it is possible
to show the robustness of RHC comparing to that of 1Q
controller,

Note that in RHC problem K(s,t+Tc)

is a monotone

2 0 for all t,
T=t

a
increasing function and that — K(t, t+Tc¢)
aT
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Thus
where

) - -1 -1

we have Q 2 CTQyC and o{Truc(jw)} s ofTLa(jw)}
Trg(s) is the return difference matrix. We also
have

ol - Tric(iw)} s oll - Tia(gw}, (3.4)

which implies that RHC is robuster than LQ controller

since the smaller the upper bound of o{l - T(jw)} is, the
robuster is the feedback control system

3.2. Robustness of the FIR Filter

Robustness of the FIR filter can be analysed by a dual
form of RHC.

The return difference matrix Trir(s} of FIR filter
satisfies the following relation in the frequency domain:

Tt (J%)TeIRT(-jw)= 1 + CB(jw)RET(-jw)CT (3.5)
where = 3
R := BQBT - — R(t,0) (3.6)
o0 a=T
and R(t,0) := S 1(t,0)

Since R(t,0) is a monotone decreasing function, we have
3 -
-;; R(t,0) < 0 for all t and R 2 BQBT from Eq.(3.6). Hence

the following inequalities are derived from (3.5)
- -1
of{Tryr(jw)} s of{Tkr(jw)}

- -1 - -1

of{l - Trip{Jw)} s ofl ~ Tkr(jw)}, (3.7)
where Tkr(s) is the return difference matrix of the Kalman
filter. Eq.(3.7) implies that the FIR filter is robuster
than the Kalman filter,

In this section we seperately verify the robustness of
RHC and FIR filter and show that RHC and FIR filter are
robuster than LQ and Kalman filter, respectively. Thus we
can conjecture that RHLQG/FIRF controller is robuster than
LQG controller. By the way, even though LQ controller and
Kalman filter separately have good robustness each other
however, when two methods are combined to be applied to
LQG problem, they the
robustness of RHLQG/FIRF is also in question and requires

may lose robustness, Hence

further research.

4, Simulation

We shall now use the RHLQG/FIRF approach to design a

compensator for the nonminimum phase plant given by the

-4 -3 0 35
[: :} X + [: :} u o+ {‘ ‘] w (4.1)
1 0 1 -61 -
(4.2)

[1-2]x+vw

equations:

e
n

with E(w)=E(v)=0: E[w(t)w(s))= E[v(t)v(s)] = &(t-s). The
plant in this simulation is nonminimum phase system with



transfer function G(s)=(s-2)/{s+1)(s+3). When we take the
sampling period as T = 0.1{sec], the discrete time system
is represented by

x(k+1) = Ax(k) + Bu(k) + Gw(k)
y(k) = Cx(k) + v(k) (4.3)
where
A= 0.6588 -0.2460 , B=— 0.0820
[ 0,0820 0:9868 ] [ 0.0044 ]
c=1-2],6G-= 35
[: -61

Nyquist diagrams for the LQG/LTR and RHLQG/FIRF are
given in Fig.1 and Fig.2. This simulation result shows
that the LQG/LTR given in Fig.l
(-1,0) point and that when LQG/LTR controller is applied
to nonminimum phase plant the system become unstable. So
LQG/LTR control method is not appropriate to design a
plant with modelling error and nonminimum phase zeros. As
shown Nyquist diagrams in Fig.2, the RHLQG/FIRF is well
suited to stabilize the system even under parameter

is encircle the loci

variation and nonminimum phase zeros.

S, Conclusions

This paper proposed RHLQG/FIRF controller which has
better robustness characteristics than conventional LQG or
LQG/LTR design methods. We verify that RHC and FIR filter
better than LQ and Kalman filter,
respectively, Even though RHC and FIR filter have a good
the robustness of RHLQG/FIRF
also in question and thus requires further research,

have robustness

robust characteristics, is

Acknowl edgement

This work was supported in part by Inha University
Research Grant, 1992,
Reference

[1] B.D.O, Anderson and J.B. Moore, Optimal Control :
Linear Quadratic methods, Prentice-Hall, 1990,

U. Shaked and E. Soroka,” On the stability robustness
of the continuous-time LQG optimal control,” IEEE
Trans on Autom, Control vol. AC-30. pp.1039-1043, Oct.
1985.

0.K. Kwon, J.H. Lee, K.S. Yoo and W.H. Kwon, " Optimal
FIR filter for state-space models with control input,”

[2}

[3]

Proceeding of the joint conference of KIEE and KITE,
May, 1992,
[4] W.H. Kwon and A E. Pearson,™ A modified quadratic cost

problem and feedback stabilization of a linear system”
1EEE Trans. on Autom. Control, vol AC-22, pp. 838-842,

Oct, 1977,
[5] M.A. Poubelle, R.R. Bitmead, and M.R. Gever, ~ Fake
algebraic Riccati techniques and stability, " IEEE

Trans. on Autom. Control, vol AC-33, pp. 379-381, Apr.
1988.
R.R, Bitmead, M.R. Gevers and V. Wertz, Adaptive
Optimal Control : The thinking man’s GPC,Prentice Hall
1990.

(6]

F

196

—

[71 R.R. Bitmead, 1.R. Petersen, and R.J.
Kaye, " Monotonicity and stabilizability properties
difference equation :

M.R. Gevers,

of solutions of the Riccati

Proposition, lemmas, theorems, fallacious and counter-
examples,” Syst. Contr, Lett., vol. 5, pp. 309-31i5,
1985,

[8) J.M. Maciejowski, Multivariable feedback design,

Addison-Wesley, 1990.
[9] S.¥W. Kim, W.H. Kwon and J.H. Lee,” Allowable parameter
variations and robustness recovery in LQG regulators,”
Int.J. of Robust and Nonlinear Contr., vol.l, pp.33-42
1991,

[10] J.C. Doyle and G. Stein,” Robustness with observers,”

IEEE Trans, on Autom. Control vol. AC-24, pp. 607-611
Aug. 1979,
0
02 J
0.4 l
ool L\ /
aal— 1\ /

Imaginary

8.1 A Nyquist diagram of LQG/LTR controlier for system (4.1)

-0.0005 l

-0.001

-0.0015

-0.002

-0.0025

Imaginary

-0.003

-0.0035:

-0.004

-0.0045

0 0.0010.0020.0030.0040.0050.0060.0070.0080.009 0.01

Fig.2 A Nyquist diagram of RHLQG/FIRF for system (4.,1)



