• Title/Summary/Keyword: Rear recombination

Search Result 23, Processing Time 0.024 seconds

Characteristics of Mono Crystalline Silicon Solar Cell for Rear Electrode with Aluminum and Aluminum-Boron (Aluminum 및 Aluminum-Boron후면 전극에 따른 단결정 실리콘 태양전지 특성)

  • Hong, Ji-Hwa;Baek, Tae-Hyeon;Kim, Jin-Kuk;Choi, Sung-Jin;Kim, Nam-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong;Song, Hee-Eun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.34-39
    • /
    • 2011
  • Screen printing method is a common way to fabricate the crystalline silicon solar cell with low-cost and high-efficiency. The screen printing metallization use silver paste and aluminum paste for front and rear contact, respectively. Especially the rear contact between aluminum and silicon is important to form the back surface filed (Al-BSF) after firing process. BSF plays an important role to reduces the surface recombination due to $p^+$ doping of back surface. However, Al electrode on back surface leads to bow occurring by differences in coefficient of thermal expansion of the aluminum and silicon. In this paper, we studied the properties of mono crystalline silicon solar cell for rear electrode with aluminum and aluminum-boron in order to characterize bow and BSF of each paste. The 156*156 $m^2$ p-type silicon wafers with $200{\mu}m$ thickness and 0.5-3 ${\Omega}\;cm$ resistivity were used after texturing, diffusion, and antireflection coating. The characteristics of solar cells was obtained by measuring vernier callipers, scanning electron microscope and light current-voltage. Solar cells with aluminum paste on the back surface were achieved with $V_{OC}$ = 0.618V, JSC = 35.49$mA/cm^2$, FF(Fill factor) = 78%, Efficiency = 17.13%.

  • PDF

Computer simulation for the effects of inserting the textured ZnO and buffer layer in the rear side of ZnO/nip-SiC: H/metal type amorphous silicon solar cells (Zno/nip-SiC:H/금속기판 구조 비정질 실리콘 태양전지의 후면 ZnO 및 완충층 삽입 효과에 대한 컴퓨터 수치해석)

  • Jang, Jae-Hoon;Lim, Koeng-Su
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1277-1279
    • /
    • 1994
  • In the structure of ZnO/nip-SiC: H/metal substrate amorphous silicon (a-Si:H) solar cells, the effects of inserting a rear textured ZnO in the p-SiC:H/metal interface and a graded bandgap buffer layer in the i/p-SiC:H have been analysed by computer simulation. The incident light was taken to have an intensity of $100mW/cm^2$(AM-1). The thickness of the a-Si:H n, ${\delta}$-doped a-SiC:H p, and buffer layers was assumed to be $200{\AA},\;66{\AA}$, and $80{\AA}$, respectively. The scattering coefficients of the front and back ZnO were taken to be 0.2 and 0.7, respectively. Inserting the rear buffer layer significantly increases the open circuit voltage($V_{oc}$) due to reduction of the i/p interface recombination rate. The use of textured ZnO markedly improves collection efficiency in the long wavelengths( above ${\sim}550nm$ ) by back scattering and light confinement effects, resulting in dramatic enhancement of the short circuit current density($J_{sc}$). By using the rear buffer and textured ZnO, the i-layer thickness of the ceil for obtaining the maximum efficiency becomes thinner(${\sim}2500{\AA}$). From these results, it is concluded that the use of textured ZnO and buffer layer at the backside of the ceil is very effective for enhancing the conversion efficiency and reducing the degradation of a-Si:H pin-type solar cells.

  • PDF

Investigation of Firing Conditions for Optimizing Aluminum-Doped p+-layer of Crystalline Silicon Solar Cells

  • Lee, Sang Hee;Lee, Doo Won;Shin, Eun Gu;Lee, Soo Hong
    • Current Photovoltaic Research
    • /
    • v.4 no.1
    • /
    • pp.12-15
    • /
    • 2016
  • Screen printing technique followed by firing has commonly been used as metallization for both laboratory and industrial based solar cells. In the solar cell industry, the firing process is usually conducted in a belt furnace and needs to be optimized for fabricating high efficiency solar cells. The printed-Al layer on the silicon is rapidly heated at over $800^{\circ}C$ which forms a layer of back surface field (BSF) between Si-Al interfaces. The BSF layer forms $p-p^+$ structure on the rear side of cells and lower rear surface recombination velocity (SRV). To have low SRV, deep $p^+$ layer and uniform junction formation are required. In this experiment, firing process was carried out by using conventional tube furnace with $N_2$ gas atmosphere to optimize $V_{oc}$ of laboratory cells. To measure the thickness of BSF layer, selective etching was conducted by using a solution composed of hydrogen fluoride, nitric acid and acetic acid. The $V_{oc}$ and pseudo efficiency were measured by Suns-$V_{oc}$ to compare cell properties with varied firing condition.

Effect of poly-Si Thickness and Firing Temperature on Metal Induced Recombination and Contact Resistivity of TOPCon Solar Cells (Poly-Si 두께와 인쇄전극 소성 온도가 TOPCon 태양전지의 금속 재결합과 접촉비저항에 미치는 영향)

  • Lee, Sang Hee;Yang, Hee Jun;Lee, Uk Chul;Lee, Joon Sung;Song, Hee-eun;Kang, Min Gu;Yoon, Jae Ho;Park, Sungeun
    • Current Photovoltaic Research
    • /
    • v.9 no.4
    • /
    • pp.128-132
    • /
    • 2021
  • Advances in screen printing technology have been led to development of high efficiency silicon solar cells. As a post PERx structure, an n-type wafer-based rear side TOPCon structure has been actively researched for further open-circuit voltage (Voc) improvement. In the case of the metal contact of the TOPCon structure, the poly-Si thickness is very important because the passivation of the substrate will be degraded when the metal paste penetrates until substrate. However, the thin poly-Si layer has advantages in terms of current density due to reduction of parasitic absorption. Therefore, poly-Si thickness and firing temperature must be considered to optimize the metal contact of the TOPCon structure. In this paper, we varied poly-Si thickness and firing peak temperature to evaluate metal induced recombination (Jom) and contact resistivity. Jom was evaluated by using PL imaging technique which does not require both side metal contact. As a results, we realized that the SiNx deposition conditions can affect the metal contact of the TOPCon structure.

A Study on Blister Formation and Electrical Characteristics with Varied Annealing Condition of P-doped Amorphous Silicon

  • Choe, Seong-Jin;Kim, Ga-Hyeon;Gang, Min-Gu;Lee, Jeong-In;Kim, Dong-Hwan;Song, Hui-Eun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.346.2-346.2
    • /
    • 2016
  • The rear side contact recombination in the crystalline silicon solar cell could be reduced by back surface field. We formed polycrystalline silicon as a back surface field through crystallization of amorphous silicon. A thin silicon oxide applied to the passivation layer. We used quasi-steady-state photoconductance measurement to analyze electrical properties with various annealing condition. And, blister formed on surface of wafer during the annealing process. We observed the blister after varied annealing process with wafer of various surface. Shape and density of blister is influenced by various annealing temperature and process time. As the annealing temperature became higher, the average diameter of blister is decreased and total number of blister is increased. The sample with the $600^{\circ}C$ annealing temperature and 1 min annealing time exhibited the highest implied open circuit voltage and lifetime. We predicted that the various shape and density of blister affects the lifetime and implied open circuit voltage.

  • PDF

Efficiency Improvement of Polycrystalline Silicon Solar Cells using a Grain boundary treatment (결정입계 처리에 따른 다결정 실리콘 태양전지의 효율 향상)

  • 김상수;김재문;임동건;김광호;원충연;이준신
    • Electrical & Electronic Materials
    • /
    • v.10 no.10
    • /
    • pp.1034-1040
    • /
    • 1997
  • A solar cell conversion effiency was degraded by grain boundary effect in polycrystalline silicon. Grain boundaries acted as potential barriers as well as recombination centers for the photo-generated carriers. To reduce these effects of the grain boundaries we investigated various influencing factors such as emitter thickness thermal treatment preferential chemical etching of grain boundaries grid design contact metal and top metallization along boundaries. Pretreatment in $N_2$atmosphere and gettering by POCl$_3$and Al were performed to obtain multicrystalline silicon of the reduced defect density. Structural electrical and optical properties of slar cells were characterized before and after each fabrication process. Improved conversion efficiencies of solar cell were obtained by a combination of pretreatment above 90$0^{\circ}C$ emitter layer of 0.43${\mu}{\textrm}{m}$ Al diffusion in to grain boundaries on rear side fine grid finger top Yb metal and buried contact metallization along grain boundaries.

  • PDF

A Study on the Application of Thin Film Passivation and Crystalline Silicon Solar Cells Using PECVD Process (PECVD 공정을 이용한 후면 패시베이션 및 결정질 실리콘 태양전지 적용에 관한 연구)

  • Kim, Kwan-Do
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.68-71
    • /
    • 2020
  • In this study, SiNx and Al2O3 thin film was manufactured using PECVD deposition process and applied to crystalline silicon solar cells, resulting in 16.7% conversion efficiency. The structural improvement experiment of the rear electrode resulted in a 1.7% improvement in conversion efficiency compared to the reference cell by reducing the recombination rate of minority carriers and increasing the carrier lifetime by forming a passivation layer consisting of SiNx and Al2O3 thin films through the PECVD process.

Rear Surface Passivation of Silicon Solar Cell with AlON Layer by Reactive Magnetron Sputtering

  • Moon, Sun-Woo;Kim, Eun-Kyeom;Park, Won-Woong;Kim, Kyung-Hoon;Kim, Sung-Min;Kim, Dong-Hwan;Han, Seung-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.430-430
    • /
    • 2012
  • The surface recombination velocity of the silicon solar cell could be reduced by passivation with insulating layers such as $SiO_2$, SiNx, $Al_2O_3$, a-Si. Especially, the aluminium oxide has advantages over other materials at rear surface, because negative fixed charge via Al vacancy has an additional back surface field effect (BSF). It can increase the lifetime of the hole carrier in p-type silicon. The aluminium oxide thin film layer is usually deposited by atomic layer deposition (ALD) technique, which is expensive and has low deposition rate. In this study, ICP-assisted reactive magnetron sputtering technique was adopted to overcome drawbacks of ALD technique. In addition, it has been known that by annealing aluminium oxide layer in nitrogen atmosphere, the negative fixed charge effect could be further improved. By using ICP-assisted reactive magnetron sputtering technique, oxygen to nitrogen ratio could be precisely controlled. Fabricated aluminium oxy-nitride (AlON) layer on silicon wafers were analyzed by x-ray photoelectron spectroscopy (XPS) to investigate the atomic concentration ratio and chemical states. The electrical properties of Al/($Al_2O_3$ or $SiO_2/Al_2O_3$)/Si (MIS) devices were characterized by the C-V measurement technique using HP 4284A. The detailed characteristics of the AlON passivation layer will be shown and discussed.

  • PDF

Optimization of the Phosphorus Doped BSF Doping Profile and Formation Method for N-type Bifacial Solar Cells

  • Cui, Jian;Ahn, Shihyun;Balaji, Nagarajan;Park, Cheolmin;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.4 no.2
    • /
    • pp.31-41
    • /
    • 2016
  • n-type PERT (passivated emitter, rear totally diffused) bifacial solar cells with boron and phosphorus diffusion as p+ emitter and n+ BSF (back surface field) have attracted significant research interest recently. In this work, the influences of wafer thickness, bulk lifetime, emitter, BSF on the photovoltaic characteristics of solar cells are discussed. The performance of the solar cell is determined by using one-dimensional solar cell simulation software PC1D. The simulation results show that the key role of the BSF is to decrease the surface doping concentration reducing the recombination and thus, increasing the cell efficiency. A lightly phosphorus doped BSF (LD BSF) was experimentally optimized to get low surface dopant concentration for n type bifacial solar cells. Pre-oxidation combined with a multi-plateau drive-in, using limited source diffusion was carried out before pre-deposition. It could reduce the surface dopant concentration with minimal impact on the sheet resistance.

Analysis of Correlation Between Silicon Solar Cell Fabrication Steps and Possible Degradation (실리콘 태양전지 제조공정과 열화의 상관관계 분석)

  • Yewon Cha;Suresh Kumar Dhungel;Junsin Yi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.1
    • /
    • pp.16-22
    • /
    • 2023
  • In a solar cell, degradation refers to the decrease in performance parameters caused by defects originated due to various causes. During the fabrication process of solar cells, degradation is generally related to the processes such as passivation or firing. There exist sources of many types of degradation; however, the exact cause of Light and elevated Temperature Induced Degradation (LeTID) is yet to be determined. It is reported that the degradation and the regeneration occur due to the recombination of hydrogen and an arbitrary substance. In this paper, we report the deposition of Al2O3 and SiNX on silicon wafers used in the Passivated Emitter and Rear Contact (PERC) solar structure and its degradation pattern. A higher degradation rate was observed in the sample with single layer of Al2O3 only, which indicates that the degradation is affected by the presence or the absence of a passivation thin film. In order to alleviate the degradation, optimization of different steps should be carried out in consideration of degradation in the solar cell fabrication process.