DOI QR코드

DOI QR Code

Analysis of Correlation Between Silicon Solar Cell Fabrication Steps and Possible Degradation

실리콘 태양전지 제조공정과 열화의 상관관계 분석

  • Yewon, Cha (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Suresh Kumar, Dhungel (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Junsin, Yi (College of Information and Communication Engineering, Sungkyunkwan University)
  • 차예원 (성균관대학교 전자전기컴퓨터공학과) ;
  • ;
  • 이준신 (성균관대학교 정보통신대학)
  • Received : 2022.09.01
  • Accepted : 2022.09.15
  • Published : 2023.01.01

Abstract

In a solar cell, degradation refers to the decrease in performance parameters caused by defects originated due to various causes. During the fabrication process of solar cells, degradation is generally related to the processes such as passivation or firing. There exist sources of many types of degradation; however, the exact cause of Light and elevated Temperature Induced Degradation (LeTID) is yet to be determined. It is reported that the degradation and the regeneration occur due to the recombination of hydrogen and an arbitrary substance. In this paper, we report the deposition of Al2O3 and SiNX on silicon wafers used in the Passivated Emitter and Rear Contact (PERC) solar structure and its degradation pattern. A higher degradation rate was observed in the sample with single layer of Al2O3 only, which indicates that the degradation is affected by the presence or the absence of a passivation thin film. In order to alleviate the degradation, optimization of different steps should be carried out in consideration of degradation in the solar cell fabrication process.

Keywords

Acknowledgement

본 논문은 2020년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의(과제번호: 20203030010060)와 한국전력공사의 2021년 선정 기초연구개발 과제연구비에 의해 지원되었음(과제번호 : R21XO01-22).

References

  1. M. Rabelo, H. Park, Y. Kim, E. C. Cho, and J. Yi, Trans. Electr. Electron. Mater., 22, 575 (2021). [DOI: https://doi.org/10.1007/s42341-021-00359-4]
  2. V. Sharma and S. S. Chandel, Renew. Sust. Energ. Rev., 27, 753 (2013). [DOI: https://doi.org/10.1016/j.rser.2013.07.046]
  3. A. C. nee Wenham, S. Wenham, R. Chen, C. Chan, D. Chen, B. Hallam, D. Payne, T. Fung, M. Kim, S. Liu, S. Wang, K. Kim, A. Samadi, C. Sen, C. Vargas, U. Varshney, B.V. Stefani, P. Hamer, G. Bourret-Sicotte, N. Nampalli, Z. Hameiri, C. Chong, and M. Abbott, 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC)(A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC) (pp. 0001-0008). [DOI: https://doi.org/10.1109/PVSC.2018.8548100]
  4. M. Seok, J. Kim, Y. Lee, Y. Kim, Y. Kim, and S. Kim, Energies, 14, 19 (2021). [DOI: https://doi.org/10.3390/en14196352]
  5. J. Lindroos and H. Savin, Sol. Energy Mater. Sol. Cells, 147, 115 (2016). [DOI: https://doi.org/10.1016/j.solmat.2015.11.047]
  6. F. Kersten, F. Fertig, K. Petter, B. Kloter, E. Herzog, M. B. Strobel, J. Heitmann, and J. W. Muller, Energy Procedia, 124, 540 (2017). [DOI: https://doi.org/10.1016/j.egypro.2017.09.260]
  7. B. Hallam, A. Herguth, P. Hamer, N. Nampalli, S. Wilking, M. Abbott, S. Wenham, and G. Hahn, Appl. Sci., 8, 10 (2017). [DOI: https://doi.org/10.3390/app8010010]
  8. A. Inglese, A. Focareta, F. Schindler, J. Schon, J. Lindroos, M. C. Schubert, and H. Savin, Energy Procedia, 92, 808 (2016). [DOI: https://doi.org/10.1016/j.egypro.2016.07.073]
  9. U. Varshney, M. Abbott, A Ciesla, D. Chen, S. Liu, C. Sen, M. Kim, S. Wenham, B. Hoex, and C. Chan, IEEE J. photovolt., 9, 601 (2019). [DOI: https://doi.org/10.1109/JPHOTOV.2019.2896671]
  10. U. Varshney, B. Hallam, P. Hamer, A. Ciesla, D. Chen, S. Liu, C. Sen, A. Samadi, M. Abbott, C. Chan, and B. Hoex, IEEE J. Photovolt., 10, 19 (2020). [DOI: https://doi.org/10.1109/JPHOTOV.2019.2945199]
  11. D. Kang, H. C. Sio, D. Yan, J. Stuckelberger, X. Zhang, and D. Macdonald, Sol. Energy Mater. Sol. Cells, 234, 111407 (2022). [DOI: https://doi.org/10.1016/j.solmat.2021.111407]
  12. J. Schmidt, D. Bredemeier, and D. C. Walter, IEEE J. Photovolt., 9, 1497 (2019). [DOI: https://doi.org/10.1109/JPHOTOV.2019.2937223]
  13. A. Cuevas, P.A. Basore, G. Giroult-Matlakowski, and C. Dubois, J. Appl. Phys., 80, 3370 (1996). [DOI: https://doi.org/10.1063/1.363250]
  14. M.A. Green, Sol. Energy Mater. Sol. Cells, 143, 190 (2015). [DOI: https://doi.org/10.1016/j.solmat.2015.06.055]
  15. Y. Yang, P.P. Altermatt, Y. Cui, Y. Hu, D. Chen, L. Chen, G. Xu, X. Zhang, Y. Chen, P. Hamer, R.S. Bonilla, Z. Feng, P.J. Verlinden, AIP Conf. Proc., 1999, 040026 (2018). [DOI: https://doi.org/10.1063/1.5049289]
  16. D. Skorka, A. Zuschlag, and G. Hahn, AIP Conf. Proc., 1999, 130015 (2018). [DOI: https://doi.org/10.1063/1.5049334]
  17. C. E. Chan, D.N.R. Payne, B. J. Hallam, M. D. Abbott, T. H. Fung, A. M. Wenham, B. S. Tjahjono, and S. R. Wenham, IEEE J. Photovolt., 6, 1473 (2016). [DOI: https://doi.org/10.1109/JPHOTOV.2016.2606704]
  18. X. Zheng, C. Zhou, X. Jia, E. Jia, and W. Wang, Sol. Energy, 162, 372 (2018). [DOI: https://doi.org/10.1016/j.solener.2018.01.027]
  19. T. Luka, S. Eiternick, S. Frigge, C. Hagendorf, H. Mehlich, and M. Turek, Proc. 31st Eur. Photovoltaic Sol. Energy Conf. Exhib., 2BV.8.12, 826 (2015). [DOI: https://doi.org/10.4229/EUPVSEC20152015-2BV.8.12]
  20. K. Ramspeck, S. Zimmermann, H. Nagel, A. Metz, Y. Gassenbauer, B. Brikmann, and A. Seidl, Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition, 2DO.3.4, 861 (2012). [DOI: https://doi.org/10.4229/27thEUPVSEC2012-2DO.3.4]
  21. K. Petter, K. Hubener, F. Kersten, M. Bartzsch, F. Fertig, B. Kloter, and J. Muller, 9th Int. Work. Cryst. Silicon Sol. Cells, 6, 1 (2016).
  22. H. Deniz, J. Bauer, and O. Breitenstein, Sol. RRL, 2, 1800170 (2018). [DOI: https://doi.org/10.1002/solr.201800170]
  23. C. Sen, C. Chan, P. Hamer, M. Wright, C. Chong, B. Hallam, and M. Abbott, Sol. Energy Mater. Sol. Cells, 209, 110470 (2020). [DOI: https://doi.org/10.1016/j.solmat.2020.110470]
  24. N. E. Grant, J. R. Scowcroft, A. I. Pointon, M. Al-Amin, P. P. Altermatt, and J. D. Murphy, Sol. Energy Mater. Sol. Cells, 206, 110299 (2020). [DOI: https://doi.org/10.1016/j.solmat.2019.110299]
  25. M. Wagner, F. Wolny, M. Hentsche, A. Krause, L. Sylla, F. Kropfgans, M. Ernst, R. Zierer, P. Bonisch, P. Muller, N. Schmidt, V. Osinniy, P. Hartmann, R. Mehnert, and H. Neuhaus, Sol. Energy Mater. Sol. Cells, 187, 176 (2018). [DOI: https://doi.org/10.1016/j.solmat.2018.06.009]
  26. K. Krauss, A. A. Brand, F. Fertig, S. Rein, and J. Nekarda, IEEE J. Photovolt., 6, 1427 (2016). [DOI: https://doi.org/10.1109/JPHOTOV.2016.2598273]
  27. F. Fertig, K. Krauss, and S. Rein, Phys. Status Solidi RRL, 9, 41 (2015). [DOI: https://doi.org/10.1002/pssr.201409424]
  28. F. Kersten, P. Engelhart, H.-C. Ploigt, A. Stekolnikov, T. Lindner, F. Stenzel, M. Bartzsch, A. Szpeth, K. Petter, J. Heitmann, and J. W. Muller, Sol. Energy Mater. Sol. Cells, 142, 83 (2015). [DOI: https://doi.org/10.1016/j.solmat.2015.06.015]
  29. M. Padmanabhan, K. Jhaveri, R. Sharma, P. K. Basu, S. Raj, J. Wong, and J. Li, Phys. Status Solidi RRL, 10, 874 (2016). [DOI: https://doi.org/10.1002/pssr.201600173]
  30. F. Kersten, F. Fertig, K. Petter, B. Kloter, E. Herzog, M. B. Strobel, J. Heitmann, and J. W. Muller, Energy Procedia, 124, 540 (2017). [DOI: https://doi.org/10.1016/j.egypro.2017.09.260]
  31. K. Nakayashiki, J. Hofstetter, A. E. Morishige, T.T.A. Li, D. B. Needleman, M. A. Jensen, and T. Buonassisi, IEEE J. Photovolt., 6, 860 (2016). [DOI: https://doi.org/10.1109/JPHOTOV.2016.2556981]
  32. C. Vargas, K. Kim, G. Coletti, D. Payne, C. Chan, S. Wenham, and Z. Hameiri, IEEE J. Photovolt., 8, 413 (2018). [DOI: https://doi.org/10.1109/JPHOTOV.2017.2783851]
  33. D. Kang, H.C. Sio, D. Yan, J. Stuckelberger, X. Zhang, and D. Macdonald, Sol. Energy Mater. Sol. Cells, 234, 111407 (2022). [DOI: https://doi.org/10.1016/j.solmat.2021.111407]
  34. Z. Hu, D. Lin, X. Yu, C. Seiffert, A. Kuznetsov, and D. Yang, Appl Phys. Express, 14, 115502 (2021). [DOI: https://doi.org/10.35848/1882-0786/ac2ae6]
  35. S. Li, X. Xi, G. Liu, L. Wang, Y. Jiang, and L. Chen, Silicon, 14, 11443 (2022). [DOI: https://doi.org/10.1007/s12633-022-01831-3]
  36. J.J. Guo, D. Wang, Y.T. Xu, X.P. Zhu, K.L. Wen, G.H. Miao, W.W. Cao, J.H. Si, M. Lu, and H.T. Guo, AIP Adv., 9, 095303 (2019). [DOI: https://doi.org/10.1063/1.5113671]
  37. G. Dingemans, M.C.M. van de Sanden, and W.M.M. Kessels, Electrochem. Solid-State Lett., 13, H76 (2009). [DOI: https://doi.org/10.1149/1.3276040]
  38. G. Dingemans, F. Einsele, W. Beyer, M.C.M. van de Sanden, and W.M.M. Kessels, J. Appl. Phys., 111, 093713 (2012). [DOI: https://doi.org/10.1063/1.4709729]
  39. C. Sen, P. Hamer, A. Soeriyadi, B. Wright, M. Wright, A. Samadi, D. Chen, B. V. Stefani, D. Zhang, J. Wu, F. Jiang, B. Hallam, and M. Abbott, Sol. Energy Mater. Sol. Cells, 235, 111497 (2022). [DOI: https://doi.org/10.1016/j.solmat.2021.111497]
  40. D. Sperber, A, Graf, D. Skorka, A. Herguth, and G. Hahn, IEEE J. Photovolt., 7, 1627 (2017). [DOI: https://doi.org/10.1109/JPHOTOV.2017.2755072]