• 제목/요약/키워드: Real-Time Forecasting System

검색결과 202건 처리시간 0.025초

지능을 이용한 농사 전문가 시스템 (Farming Expert System using intelligent)

  • 홍유식
    • 한국컴퓨터산업학회논문지
    • /
    • 제6권2호
    • /
    • pp.241-248
    • /
    • 2005
  • 기존의 예측 방법들은 과거의 통계적인 수치를 사용해서 미래를 예측했었다. 정확하게 농산물 가격을 예측하려면 정확한 지식과 많은 노력이 필요하다. 그러므로 이러한 문제점을 해결하기 위해서, 본 논문에서는 농산물 예측 가격을 향상하기 위해서 전처리로 퍼지 및 신경망을 사용하였다. 또한 후처리로써 예기치 못한 상황을 실시간으로 예측할 수 있는 지능형 농사 전문가시스템을 개발하였다. 시뮬레이션결과 제안된 농산물 가격 예측이 퍼지 규칙을 사용하지 않은 기존 수요예측 시스템보다 가격오차를 줄일 수 있음을 입증했다.

  • PDF

인공신경망 기반 실시간 소양강 수온 예측 (Artificial Neural Network-based Real Time Water Temperature Prediction in the Soyang River)

  • 정갑주;이종현;이근영;김범철
    • 전기학회논문지
    • /
    • 제65권12호
    • /
    • pp.2084-2093
    • /
    • 2016
  • It is crucial to predict water temperature for aquatic ecosystem studies and management. In this paper, we first address challenging issues in predicting water temperature in a real time manner and propose a distributed computing model to address such issues. Then, we present an Artificial Neural Network (ANN)-based water temperature prediction model developed for the Soyang River and a cyberinfrastructure system called WT-Agabus to run such prediction models in an automated and real time manner. The ANN model is designed to use only weather forecast data (air temperature and rainfall) that can be obtained by invoking the weather forecasting system at Korea Meteorological Administration (KMA) and therefore can facilitate the automated and real time water temperature prediction. This paper also demonstrates how easily and efficiently the real time prediction can be implemented with the WT-Agabus prototype system.

DSRC와 TCS 정보를 이용한 고속도로 경로통행시간 예측 (Forecasting of Motorway Path Travel Time by Using DSRC and TCS Information)

  • 장현호;윤병조
    • 대한토목학회논문집
    • /
    • 제37권6호
    • /
    • pp.1033-1041
    • /
    • 2017
  • 출발지 기준 고속도로 경로 통행시간(PTTDP)은 첨단여행자정보시스템(ATIS)의 핵심 정보이다. 이러한 필요성에도 불구하고, 지능형교통체계(ITS)의 예측분야에서 PTTDP에 대한 연구는 성공적으로 극복해야할 핵심 도전과제중 하나로 남아있는 상태이다. 이러한 문제점을 효과적으로 극복하기 위하여, 본 연구에서는 고속도로 IC간 경로통행시간을 동적으로 예측하는 방법론을 제시하고자 한다. 제안된 모형은 고속도로망에서 TG의 교통수요와 TG간 출발지기준 경로통행시간간의 관계를 기반으로 개발되었다. 모형의 입력 자료로(TCS로 수집되는) 통행수요와(DSRC로 수집되는) 경로통행시간 자료가 이용되었다. 개발 모형은 고속도로 정보시스템에 탑재/운영하기 위하여 Data Ming 기법중 연산속도가 빠른 k-최근린 이웃을 이용하였다. 실제 자료를 이용한 적용 실험에서, 제안된 모형은 예측의 신뢰성과 연산수행속도 측면에서 ATIS에 적용이 가능한 수준의 성능을 보였다.

실시간 물 관리 운영을 위한 유역 유출 모의 모형 개발 (Development of Basin-wide runoff Analysis Model for Integrated Real-time Water Management)

  • 황만하;맹승진;고익환;박정인;류소라
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2003년도 학술발표논문집
    • /
    • pp.507-510
    • /
    • 2003
  • The development of a basin-wide runoff analysis model is to analysis monthly and daily hydrologic runoff components including surface runoff, subsurface runoff, return flow, etc. at key operation station in the targeted basin. A short-term water demand forecasting technology will be developed taking into account the patterns of municipal, industrial and agricultural water uses. For the development and utilization of runoff analysis model, relevant basin information including historical precipitation and river water stage data, geophysical basin characteristics, and water intake and consumptions needs to be collected and stored into the hydrologic database of Integrated Real-time Water Information System. The well-known SSARR model was selected for the basis of continuous daily runoff model for forecasting short and long-term natural flows.

  • PDF

하천제방 시설물의 유지관리를 위한 분석프로그램 개발 (Development of Analysis Program for Maintenances of Levee Facilities)

  • 유병선;박용대;김활수;장기태
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.704-715
    • /
    • 2008
  • The Aim of this development is the management of a forecasting analysis program based on a real-time remote sensing data. Using this program it is possible to predict a failure of levee facilities in advance. therefor, it is necessary for making plans of a safety countermove. In this development we have researched the analysis method which could operate effectively the levee facilities using real-time monitoring data from a remote sensing system and the safety managerial program using the algorism from the analysis method developed.

  • PDF

뉴로-퍼지 모델 기반 전력 수요 예측 시스템: 시간, 일간, 주간 단위 예측 (Neuro-Fuzzy Model based Electrical Load Forecasting System: Hourly, Daily, and Weekly Forecasting)

  • 박영진;왕보현
    • 한국지능시스템학회논문지
    • /
    • 제14권5호
    • /
    • pp.533-538
    • /
    • 2004
  • 본 논문은 뉴로-퍼지 모델의 구조 학습을 이용하여 단기 전력 수요 예측시스템을 개발하기 위한 체계적인 방법을 제안한다. 제안된 단기 수요 예측시스템은 1시간, 24시간, 168시간의 예측 리드 타임을 갖고 예측을 수행하기 위해서 요일 유형과 시간 별로 총 96개의 초기 구조를 미리 생성하고, 이를 초기 구조 뱅크에 저장한다. 예측이 수행되는 시점에 해당하는 초기구조를 선택하여 뉴로-퍼지 모델을 초기화하고, 학습하고, 예측을 수행한다. 제안된 예측시스템은 단지 2개의 입력 변수만을 이용하기 때문에 간단한 모델 구조를 가질 뿐 아니라 학습된 퍼지 규칙을 해석하는 것이 매우 용이하다는 장점을 갖는다. 제안된 방법의 실효성을 검증하기 위해 1996년과 1997년의 한극전력의 실제 전력 수요 데이터를 이용하여 1시간, 24시간, 168시간 앞의 전력 수요를 예측하는 모의 실험을 수행한다. 실험 결과 제안된 방법은 단지 2개의 입력 변수를 사용함에도 불구하고, 기존의 예측 방법과 비교하여 예측의 정확도와 신뢰도 측면에서 우수한 성능을 얻는다.

신경망 모형을 이용한 홍수유출 예측시스템의 재발 (A Development of System for Flood Runoff Forecasting using Neural Network Model)

  • 안상진;전계원
    • 한국수자원학회논문집
    • /
    • 제37권9호
    • /
    • pp.771-780
    • /
    • 2004
  • 본 논문에서는 신경망 모형을 이용해서 개발된 홍수유출 예측 시스템의 적용성을 검토하였다. 홍수유출 예측을 위한 신경망 모형을 공주, 부여지점에 적용하였으며, 신경망 모형을 입력층, 은닉층, 출력층으로 구성하였다. 입력층에는 강우자료와 홍수량 자료를 출력층에는 홍수유출량이 예측되도록 구성하였다. 홍수유출 예측 시스템 구성시 예측모형 선정을 위해 신경망 모형과 상태공간 모형을 이용하여 홍수시 실시간 하천유출량 예측을 수행하였다. 두 모형의 예측결과 비교시 신경망 모형이 실시간 홍수량 예측에 적합한 모형으로 선정되었다. 신경망 모형은 Web 상에서 사용이 가능하게 변환하여 홍수유출 예측시스템의 기본모형으로 개발되었다. Web 기반 모형으로 개발된 신경망 모형을 서버에 탑재하고 금강수계의 본류와 주요 지점에 적용하여 Web 상에서 개발된 모형의 적용성을 검증하였다.

지능형 통합 생산 물류 시스템의 동기화된 시스템 설계 (A Synchronous System Design of an Intelligent-Integrated Production & Logistics Systems)

  • 배재호;왕지남
    • 산업공학
    • /
    • 제12권2호
    • /
    • pp.222-236
    • /
    • 1999
  • This paper presents a design and implementation of an intelligent-integrated production-logistics systems. The situation considered here is that there are multiple manufacturing plants and multiple distribution centers. Effective distribution resource and production planning are required to reduce inventory cost and to avoid inventory shortage. We propose an intelligent forecasting scheme of each distribution centers, adaptive inventory replenishment planning, distribution resource planning, and integrated production planning system. In forecasting a huge number of on-line model identification is performed using neural network approximation capability. An efficient adaptive replenishment planning and distribution resource planning are also presented in connection with forecasting scheme. An appropriate production is also requested based on production lead-time and the results of distribution planning. Experimental simulations are presented to verify the proposed approach using real data.

  • PDF

Using Artificial Neural Networks for Forecasting Algae Counts in a Surface Water System

  • Coppola, Emery A. Jr.;Jacinto, Adorable B.;Atherholt, Tom;Poulton, Mary;Pasquarello, Linda;Szidarvoszky, Ferenc;Lohbauer, Scott
    • 생태와환경
    • /
    • 제46권1호
    • /
    • pp.1-9
    • /
    • 2013
  • Algal blooms in potable water supplies are becoming an increasingly prevalent and serious water quality problem around the world. In addition to precipitating taste and odor problems, blooms damage the environment, and some classes like cyanobacteria (blue-green algae) release toxins that can threaten human health, even causing death. There is a recognized need in the water industry for models that can accurately forecast in real-time algal bloom events for planning and mitigation purposes. In this study, using data for an interconnected system of rivers and reservoirs operated by a New Jersey water utility, various ANN models, including both discrete prediction and classification models, were developed and tested for forecasting counts of three different algal classes for one-week and two-weeks ahead periods. Predictor model inputs included physical, meteorological, chemical, and biological variables, and two different temporal schemes for processing inputs relative to the prediction event were used. Despite relatively limited historical data, the discrete prediction ANN models generally performed well during validation, achieving relatively high correlation coefficients, and often predicting the formation and dissipation of high algae count periods. The ANN classification models also performed well, with average classification percentages averaging 94 percent accuracy. Despite relatively limited data events, this study demonstrates that with adequate data collection, both in terms of the number of historical events and availability of important predictor variables, ANNs can provide accurate real-time forecasts of algal population counts, as well as foster increased understanding of important cause and effect relationships, which can be used to both improve monitoring programs and forecasting efforts.

서울시 공유자전거의 수요 예측 모델 개발 (Development of Demand Forecasting Model for Seoul Shared Bicycle)

  • 임희종;정광헌
    • 한국콘텐츠학회논문지
    • /
    • 제19권1호
    • /
    • pp.132-140
    • /
    • 2019
  • 최근 전 세계 많은 도시는 교통량 및 대기오염을 감축하기 위해 공유자전거 시스템을 도입하여 운영하고 있고, 서울시에서도 2015년부터 따릉이 공유자전거 서비스를 제공하고 있다. 공유자전거의 사용이 확산됨에 따라 대여소별로 자전거의 수요는 증가하고 있으나, 제한된 예산 하에서 대여소별로 수요를 관리하기 때문에 운영 및 관리상의 어려움이 존재한다. 현재 자전거 재배치를 통해 대여소별로 수요의 변동을 해결하려고 노력하고 있으나, 불확실한 미래의 사용자 수요를 정확히 예측하는 것이 보다 근본적인 방안이다. 본 연구에서는 통계적 시계열 분석을 통해 서울시 따릉이의 수요를 예측하는 모델을 개발하고, 이를 실제 데이터를 통해 분석하고자 한다. 특히, 전기 사용량의 수요에 사용했던 Holt-Winters방법을 따릉이 수요 예측을 위해 변형하여 적용하였고, 또한 파라미터들의 변동이 실제 수요예측에 어떠한 영향을 미치는지 민감도 분석도 수행하였다.