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인공신경망 기반 실시간 소양강 수온 예측

Artificial Neural Network-based Real Time Water Temperature Prediction in the Soyang 

River
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Abstract - It is crucial to predict water temperature for aquatic ecosystem studies and management. In this paper, we first 

address challenging issues in predicting water temperature in a real time manner and propose a distributed computing model 

to address such issues. Then, we present an Artificial Neural Network (ANN)-based water temperature prediction model 

developed for the Soyang River and a cyberinfrastructure system called WT-Agabus to run such prediction models in an 

automated and real time manner. The ANN model is designed to use only weather forecast data (air temperature and rainfall) 

that can be obtained by invoking the weather forecasting system at Korea Meteorological Administration (KMA) and therefore 

can facilitate the automated and real time water temperature prediction. This paper also demonstrates how easily and 

efficiently the real time prediction can be implemented with the WT-Agabus prototype system.
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1. Introduction

Water temperature is one of main variables in water quality 

that influence many chemical processes as well as biological 

conditions and behaviors [1]. Therefore, the aquatic ecosystem 

management often require prediction models for water 

temperature. For example, real time water temperature 

prediction provides scientists and environmental policy makers 

with new opportunities for managing water quality proactively 

and dealing with unexpected or abrupt environmental changes 

promptly. In environmental studies, there are lots of research 

efforts on the development of such prediction models and 

their application for environmental analyses, planning, and 

decision-making [1-13]. However, these research efforts are 

usually not intended for real time prediction.

In this paper, we present an Artificial Neural Network 

(ANN)-based water temperature prediction model developed 

for the Soyang river that can predicts water temperatures 

only by weather forecast data. Such forecast data can be 

easily obtained by invoking the weather forecasting system 

at Korea Meteorological Administration (KMA). Therefore, 

this ANN model is designed to facilitate the automation of 

data collection at run time. Then, we also present a 

cyberinfrastructure system called WT-Agabus to run such 

prediction models in an automated and real time manner.

Agabus is our ongoing research effort to develop a 

stream processing-based real time prediction system for 

scientific and engineering applications. WT-Agabus is a part 

of the development effort aimed specifically at real time 

water temperature prediction. Our development strategy for 

Agabus is not to implement the system from scratch but to 

integrate available system middleware as much as possible. 

This strategy allows us to reduce implementation work 

significantly and to design the system to be composable and 

extensible. In the development of WT-Agabus, we use the 

sensor network middleware called CSN and the sensor data 

repository system called S4EM which are already developed 

as separate projects [14, 15, 16]. In addition, we use the 

stream processing-based prediction model simulation system 

called PS3.

This paper is organized as follows. In Section 2, we raise 

challenging issues and propose a distributed computing 

model intended to address these issues. In Section 3, we 

present a water temperature prediction model based on 

Artificial Neural Networks (ANN). The system design of 
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그림 1 실시간 수온 예측의 컴퓨팅 구조

Fig. 1 The Computing Structure of Real Time Water 

Temperature Prediction

WT-Agabus is explained in Section 4. Section 5 explains 

the system implementation and shows the performance 

evaluation of the water temperature prediction model. In 

Section 6 and 7, we discuss related work and conclude this 

paper. This paper is an extended version of a preprint 

paper available at arXiv.org (a repository of electronic 

preprints of scientific papers) [17].

2. Distributed Computing Model for Real Time 

Environmental Prediction

Real time environmental prediction such as the prediction 

of water temperature in rivers raises serious challenges to 

both environmental scientists and IT professionals as follows. 

First, It requires a variety of technologies and systems 

including monitoring (e.g., sensor networks), data management 

(e.g., the management of time series data such as sensor 

data), the development of prediction models (e.g., Artificial 

Neural Networks), the execution of prediction models (e.g., 

analytics engines), and event notification. Therefore, it is 

very interdisciplinary and involves collaboration among experts 

from various domains.

Second, these technologies and systems must be 

seamlessly integrated and run as a single distributed system 

at run time. However, they are often independently 

developed in different research areas and not intended for 

such integration.

Finally, if prediction is required in a real time manner, 

then prediction models must be designed not to depend on 

input data that is impossible or really difficult to collect in 

an automated and real time manner. In other words, the 

developers of prediction models must consider real world 

environments where prediction models are actually used.

In this paper, we propose a distributed computing model 

designed to address these challenges efficiently. This 

computing model identifies major system components and 

how to integrate them in a real time manner. Its computing 

structure is shown in Fig. 1. The computing model 

represents real time environmental management integrating a 

number of real time computational activities:

Monitoring. Prediction models (e.g., artificial neural 

network models) are developed by analyzing datasets 

from monitoring. In addition, the execution of prediction 

models may also depend on data from real time 

monitoring as input data to generate prediction values.

Data Management. A lot of data from environmental 

monitoring is required to develop, evaluate, validate and 

improve prediction models.

Simulation. Real time environmental prediction requires 

the effective runtime execution (i.e., simulation) system 

to support various prediction models. There are already a 

variety of water temperature prediction models available 

and on-going research efforts for new models.

Notification. Prediction results (i.e., water temperature 

data predicted for the future) should be promptly 

delivered to human users or other computer systems that 

decide or take actions based on prediction results. 

Humans or computer systems involved in environmental 

management need to be notified of environmental events 

in order to work in a proactive way.

Integration. These system components should be 

integrated over data streams. Prediction is not one time 

operation but a series of operations over the streams of 

input data.

Fig. 1 illustrates a distributed computing model for real 

time environmental prediction. The arrows represent data 

streams between system components. 

3. Artificial Neural Network-based Water Temperature 

Prediction

In this section, we present an ANN-based water 

temperature prediction for the Soyang River that is based 

on the computing model given in Section 2. The computing 

model requires prediction models to use only input variables 

whose values can be collected in an automated and real 

time manner. The ANN-based water temperature prediction 

model uses only weather forecast data available online from 

KMA. Specifically, the prediction model uses only air 

temperature and rainfall as the input variables and water 
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temperature as the output variable.

3.1 Sampling

The water temperature prediction model is developed for 

the Soyang River basin located in a mountainous district in 

South Korea. The Soyang River is geographically and 

hydrologically summarized as follows. It is 77km-long and a 

steep river system (the altitude difference of the watershed 

is from 200m to 1,700m). The ratio of water flow rate on dry 

days and rainy days are greater than 300 due to the effect 

of summer monsoon. On dry days water flow is slow and the 

temperature is well equilibrated with air temperature. But on 

rainy days, the water is cooler than air temperature, because 

water flows faster and it cannot have enough time to be 

equilibrated with air temperature. Therefore, the cooling 

effect of high altitude air is exerted to the downstream 

reaches. 

This study uses the water temperature dataset collected 

at a point of inflow between the Soyang River and Lake 

Soyang from 1991 to 2009. The water temperature data was 

recorded at depth of 1m from the surface because of the 

fast water flow speed. This study also uses the 

meteorological dataset obtained from the Inje Meteorological 

station, Korea from 1991 to 2009. The distance between the 

meteorological station and the water temperature monitoring 

site is less than 3 km. We use the hourly estimates of air 

temperature (TM) and rainfall (RF) data.

3.2 Model Development

3.2.1 Data preprocessing

In the development of the water temperature prediction 

model, this study uses the air temperature and the rainfall 

as the input variables and the water temperature as the 

output variable. The entire dataset consists of 1126 records 

in this study. The first 790 observations were used to train 

the prediction model. The remaining observations were used 

to test the prediction model. 

To generate the input variables, we investigate the 

correlations coefficients with an imposed time lag. We assume 

that previous meteorological states (e.g., air temperature, 

rainfall) influence the current water temperature [6-13]. 

Specifically, we assume that Yt is related to Xt-k where Yt and 

Xt-k are defined to be the hourly water temperature at hour t 

and meteorological variables at hour t-k, respectively. The 

association between the values of Yt and Xt-k is measured by 

comparing the cross-correlation between Yt and Xt-k when k 

varies from 0 to 24. The cross-correlation based on the 

Pearson correlation function is calculated by [18,19]. 
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In this equation, sY and sX are the sample standard 

deviations of the time series Yt and Xt (weather variables), 

respectively. We use the cross-correlation to calculate the 

time lag of between the air temperature and the water 

temperature. It is found to be 17 hours. So, the air 

temperature (TM), the 17 hour-earlier air temperature, and 

the current rainfall (RF) are selected as input variables. 

To estimate the prediction model performance, the root- 

mean-square error (RMSE), the Nash Coefficient (NASH), 

the correlation coefficient (R), and the index of agreement 

(IA) are used [5,20,21].
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  . The IA is 

a relative measure which is suitable to evaluate different 

models to be compared using different data set. 

3.2.2 Artificial Neural Network

A multi-layer ANN uses an approach that creates models 

of a system state using non-linear combinations of the 

input variables [22,23,24]. The ANN model used in this 

paper is a feed-forward network with sigmoid functions in 

the hidden layers and a linear activation function in the 

output node in MATLAB ver. 2012a. The ANN model has 

only one hidden layer because according to Bishop's 

research, multiple hidden layers do not, usually, show 

significantly better performances than one hidden layer [22]. 

The ANN is trained by using a back propagation algorithm 

(a gradient descent technique) that minimizes the network 

error function [25]. 
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그림 2 Feed-forward 인공신경망

Fig. 2 Feed-forward Artificial Neural Network 

그림 3 실시간 환경 예측을 위한 시스템 구조 개념도

Fig. 3 Conceptual system architecture for real time 

environmental prediction

The ANN requires the learning rate, the number of nodes 

in a single hidden layer, and the maximum number of 

training epochs. In this paper, we applied the optimal 

number error approach [26]. The number of nodes in the 

hidden layer was varied between 5 and 25 and the learning 

rate was varied from 0.01 to 1.0 in increments of 0.05. For 

each configuration, the mean square error (MSE) between the 

model output and the measured data was computed. Having 

10 neurons in the hidden layer and 0.55 learning rate 

resulted in the maximum model performance with respect to 

MSE. As shown in Fig. 2, The final ANN structure has three 

input variables with one node accounting for bias, ten 

hidden neurons with one node accounting for bias, the 0.55 

learning rate, and one output variable of the output layer.

4. Cyberinfrastructure-based Environmental Prediction 

Support System

4.1 System Architecture

In this section, we present the architecture of the 

WT-Agabus real time water temperature prediction system 

designed as a cyberinfrastructure to integrate a collection of 

existing system middleware. WT-Agabus is designed to 

support a variety of prediction models by customization. Fig. 

3 illustrates the WT-Agabus architecture. Its major system 

components are:

PS3 (Prediction Model Simulation System over Data 

Streams) for the real time execution of prediction 

models. It is designed to run prediction models in an 

automated, real time manner. It can be configured to 

support a variety of prediction models.

CSN (Conceptually Manageable Sensor Network) for real 

time monitoring. It is designed as a sensor network 

based monitoring system. 

S4EM (Simple Sensor Data Stream Management System 

for Environmental Monitoring) for data management. It is 

desigend as a cloud data repository.

Esper for CEP-based Notification. Esper is an open 

source Complex Event Processing engine. It is designed 

to support event detection and notification on sensor 

data streams.

Web Data Portal (WDP). WDP helps scientists to access 

to the archive of monitoring data and prediction results. 

Scientists can use WDP for the development and 

improvement of prediction models.

All of these middleware systems are based on stream 

processing and management. Therefore, they are integrated 

according to the stream processing model [5,27]. In this 

section, we briefly introduce CSN and S4EM. Since we are 

currently using basic and simple CEP features in Esper, we 

do not explain Esper in this paper. However, we plan to 

develop a notification system on top of Esper [28].

4.2 CSN: Conceptually Manageable Sensor Network

In WT-Agabus, we use CSN for real time monitoring [15]. 

CSN is our separate project for the development of a 

general-purpose sensor network middleware. As shown in 

Fig. 4, it is designed to facilitate the conceptual management 

of sensor networks and the easy application development. 

In CSN, each sensor is managed as a logical data stream 

and implemented as a message queue. Sensors are accessed 

and shared via message queues according to the publish/ 
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그림 4 CSN을 위한 시스템 모델

Fig. 4 System Model for CSN

그림 5 스트림 처리 기반 예측 모델의 연속적 모사

Fig. 5 Stream Processing-based Continuous Simulation of 

Prediction Models

subscribe model. Sensors simply send their data out by 

publishing them to their message queues. Applications can 

access data from sensors by subscribing their message 

queues. This design makes applications decoupled from 

sensors and greatly facilitates the development of 

applications.

In addition to the publish/subscribe model based 

communication, the CSN runtime system also supports a 

simple TCP/IP socket based communication. Sensors can 

simply send their data to the socket and then the CSN 

runtime system publishes their data for the behalf of those 

sensors. This communication method is intended for those 

sensors that cannot communicate according to the publish/ 

subscribe model.

The current design of the CSN system also supports 

other computer systems as a kind of virtual sensor as long 

as those systems are considered to generate data streams.

4.3 S4EM: Simple Sensor Data Stream Management System 

for Envionmental Monitoring

S4EM is designed to manage data streams from sensors 

[14,16]. S4EM is our separate project for the development 

of a general-purpose sensor data management middleware 

(data repository). In S4EM, a sensor data stream is simply a 

sequence of data values from a sensor and can be appended 

with new values until the data stream is explicitly closed. 

Therefore, a sensor data stream in S4EM is an infinite 

sequence of numeric data values. Therefore, the S4EM data 

repository consists of only a number of sensor data streams. 

S4EM currently assumes the type of data from a sensor to 

be numeric and the data is associated with time-stamps. We 

plan to support data to be of other types. 

S4EM is currently implemented as a cloud SaaS service 

on top of the Google Datastore (PaaS). It provides a number 

of sensor data stream management services: create, append, 

search, retrieve, delete, and download. These services can be 

invoked by Web Browsers because they are implemented as 

Servlet programs. Since both CSN and S4EM assume data 

streams as the primary data object, they can be easily 

integrated according to the stream processing model [15,16]. 

The metadata model is designed to facilitate the analysis of 

sensor data. The current data model is based on the VEGA 

model developed by the Global Lake Ecological Observatory 

Network (GLEON) [29,30].

4.4 PS3: Prediction Model Simulation System Over Data 

Streams

The main features of the PS3 system are as follows:

Heterogeneous Prediction Models. There are a number of 

prediction models based on various methods such as 

Artificial Neural Networks [31], Hidden Markov Models 

[32], and Genetic Algorithms [33]. These models are 

implemented by model development tools such as MATLAB 

or R. These models can be manually programmed. PS3 

intends to support them in a uniform and configurable 

way.

Heterogeneous Simulation Tools. There are a number of 

simulation tools to run prediction models. They include 

MATLAB and R. PS3 intends to support them in a 

uniform and configurable way.

Stream Processing-based Continuous Simulation of 

Prediction Models. PS3 runs a prediction model according 

to the stream processing model [34]. In this model, PS3 

assumes data streaming from monitoring systems (e.g., a 

CSN system) and iterates the simulation of the model with 
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Parameter Sample Data Introduction

base_date 20121206 The rises.

base_time 1100 The time

Nx 1 The spot X coordinate

Ny 1 The spot Y coordinate

표 1 날씨 데이터 서비스에 대한 요청 인자들

Table 1 Request Parameters for Weather Data Service

Parameter Sample Data Introduction

resultCode 0 Result-code

resultMsg OK
The result message error 

message

numOfRows 10 One fruit bearing tree

pageNo 1 Page number

totalCount 10
The number of aggregated 

result

category LGT Data division code

obsrValue -1 The real condition value

표 2 날씨 데이터 서비스에 대한 응답 인자들

Table 2 Response Parameters for Weather Data Service

data values in data streams. When it access data streams, 

PS3 uses Esper with rules in EPL (Event Processing 

Language) to specify how to extract data for input 

variables from data streams. PS3 also sends prediction 

results out as data streams to a notification system or other 

applications. Fig. 5 illustrates the stream processing-based 

simulation.

5. Implementation and Experiments

5.1 The Current prototype implementation of WT-Agabus

In this section, we explain the current prototype imple- 

mentation of the WT-Agabus system. The implementation is 

shown in Fig. 6. The WT-Agabus prototype runs the 

prediction model explained in Section 3 and receives input 

data from KMA (Korea Meteorological Administration).

그림 6 WT-Agabus 프로토타입의 현재 실행시스템 구조

Fig. 6 Runtime Structure of the Current Prototype of 

WT-Agabus

그림 7 CSN의 센서 등록 창

Fig. 7 Sensor Registration Window in CSN

An experiment with WT-Agabus is explained as follows. 

First, three sensors are registered and three data streams are 

created for those sensors in the CSN system. Currently, two 

sensors from Korea Meteorological Administration (KMA) are 

air temperature and rainfall. These sensors are numbered 1 

and 2. The other sensor numbered 3 is virtual represents 

prediction results (i.e., water temperature) from PS3. In this 

implementation, we assumed virtual sensors for prediction 

results in such way that prediction models are considered as 

those virtual sensors. Fig. 7 shows the snapshot of the sensor 

registration window in CSN.

Second, data are read from two KMA sensors and they 

are published to the CSN system. KMA does not allow other 

systems to access their sensors directly, but provides 

RESTful web services for access to data from those sensors. 

The RESTful interface is explained in Table 1 and Table 2. 

Currently, KMA provides data about ten weather parameters 

such as temperature, rainfall, wind speed and wind 

direction. We implemented a system to read data from 

sensors via the RESTful web services and to publish data to 

CSN.

Third, the prediction model (given in Section 3) is 

registered and a simulation tool (MATLAB) is deployed in 

the PS3 system. The information about the prediction model 

and the simulation tool is given to PS3. PS3 provides the 

RESTful interface for the registration of prediction models 

and simulation tools. The interface is given in Table 3.
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그림 8 (a) 센서 관리창, (b) 데이터 스트림 관리 창, (c)예측 결

과를 위한 검색 및 다운로드 창

Fig. 8 (a) Sensor Management Window, (b) Data Stream 

Management Window, (c) Search and Download Window

for Prediction Results 

# Action Method Resources

1
Register the prediction 

model
PUT /node/models

2 Get the prediction model GET
/node/models/

[mid]

3
Remove the prediction 

model
DELETE

/node/models/

[mid]

4
Register the simulation 

tool
PUT /node/engines

5
Get the information 

of simulation tool
GET

/node/engines/

[eid]

6
Remove the simulation 

tool
DELETE

/node/engines/

[eid]

표 3 예측 모델과 모사 도구 관리를 위한 인터페이스

Table 3 Interface for Managing Prediction Model and 

Simulation Tool

Stream in 

CSN
EPL Statements Idx

air 

temperature

SELECT id, timestamp, avg(value) 

FROM Temperature.win:time(1 hour)
0

SELECT id, timestamp, avg(value) 

FROM Temperature.win:time(17 hour) 

output snapshot every 1 hour

2

rainfall
SELECT id, timestamp, avg(value) 

FROM Rainfall.win:time(1 hour)
1

표 4 입력 데이터 생성을 위한 EPL 규칙들

Table 4 EPL Rules for Input Data Generation 

# Action Method Resources

1

Register Prediction Mode

[mode]: prediction type

1:On_demand, 2: Scheduled. 

3: Data_driven

[interval]: interval time to 

re-run prediction model

POST

/node/prediction?

mode=1&time=t&

interval=3600

2 Start Prediction POST
/node/prediction?

action=start

3 Stop Prediction POST
/node/prediction?

action=stop

표 5 예측 관리를 위한 인터페이스

Table 5 Interface for Managing Prediction 

Fourth, three data streams (created in the first step) and 

stream processing rules (i.e., EPL statements) for input data 

are registered in the PS3 system. PS3 reads data from two 

data streams in CSN by subscribing their data streams. PS3 

publish prediction results to the other data stream in CSN. 

Table 4 shows the EPL rules for input data generation.

Fifth, the prediction service is started with a prediction 

schedule mode. The prediction schedule mode is currently 

set to the time scheduled mode. Table 5 shows interface for 

managing prediction.

Finally, three data streams (created in the first step) in 

CSN and prediction results from PS3 are stored in S4EM. 

Fig. 8 shows the snapshots of the S4EM windows.

 

5.2 Evaluation of the Water Temperature Prediction Model

The performance of the water temperature prediction 

model was evaluated. The meteorological properties and the 

water temperature at the monitoring site are provided in 

Table 6. High variability was observed in both RF and WT. 

표 6 실험 기간 동안의 기상/수온 데이터의 평균과 표준편차

Table 6 Mean and Standard Deviation Values of Meterological 

Characteristics and Water Temperatures during the 

Experimental Periods

TM. (°C) RF. (mm) WT. (°C)

Mean±std. 17.26±7.65 1.64±4.92 16.89±5.83

Ranges -11.5~30.7 0~66 -12.3~28.8

According to the evaluation results, the ANN model 

showed good performances, overall. Table 7 shows the 

values of IA, R, RMSE, and NASH that are 0.92, 0.81, 3.15, 

and 0.64, respectively. However, the ANN models showed 

different performances for different value ranges. As shown 

in Fig. 9, the ANN model usually predicted well for low 

and average values, while it did not predict high values less 
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accurately. The ANN model seems to over-estimate water 

temperatures for a high range of values. 

Although the performance of the ANN model could be 

improved by adding more input variables, that will be likely 

to complicate the automated, real time collection of data for 

input variables. 

MEAN STD RMSE NASH IA R

ANN 16.91 5.22 3.15 0.64 0.92 0.81

표 7 인공신경망 모델 성능 통계

Table 7 ANN Model performance statistics

그림 9 인공신경망으로 얻어진 소양강 수온 관측과 예측

Fig. 9 Measured and Predicted Water Temperature in the 

Soyang River Obtained by ANN

6. Related Work

There are a number of research work on water 

temperature prediction models such as statistical models and 

deterministic models [4-13]. These studies are usually aimed 

only at the achievement of higher prediction accuracies and 

basically carried out as theoretical research. This paper is 

aimed at the development of a practical water temperature 

prediction model that can be effectively applied to a real 

world prediction system. Therefore, input variables are chosen 

not only for the prediction accuracy but also for the 

automated and real time data collection. Furthermore, this 

paper presents an actual ICT system to run such prediction 

models in an automated, and real time manner.

There are many research projects on sensor networks and 

cloud databases [15,35,36,37]. These projects are usually aimed 

at individual middleware systems. This paper addresses issues 

in integrating those technologies into a cyberinfrastructure for 

real time prediction and presents an distributed computing 

system designed as a cyberinfrastructure to integrate system 

middleware such as sensor networks, a data repository, and a 

prediction support system.

There are active ongoing research activities on distributed 

streaming processing systems [27,28,34]. But they focus on 

technologies for processing data streams efficiently. However, 

this paper addresses issues in integrating streaming processing 

into application-specific computations such as prediction.

7. Conclusion

The prediction of water temperature is crucial for aquatic 

ecosystem studies and management. In this paper, we raised 

challenging issues in real time environmental prediction and 

proposed a distributed computing model to address these 

challenges. Then, we presented a Artificial Neural Network 

(ANN)–based prediction model for water temperature in the 

Soyang River that is designed to facilitate real time prediction. 

For this reason, the ANN model uses only weather forecast 

data available online from Korea Administration Agency (KMA). 

In spite of its simple design, the ANN model, overall, showed 

reasonably good performances, according to performance 

evaluation results.

In addition to the ANN-based water temperature prediction 

model, we also presented a cyberinfrastructure system called 

WT-Agabus to run such prediction models in an automated, 

real time manner. WT-Agabus is designed to integrate existing 

system middleware such as sensor networks (CSN), a cloud 

sensor data repository (S4EM), the prediction model simulation 

system (PS3), and the Esper complex event processing system. 

Finally, we explained how the real time water temperature 

prediction can be implemented with the current WT-Agabus 

prototype system. This experiment showed that such real time 

prediction can be easily and efficiently supported on a 

cyberinfrastructure like WT-Agabus.
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