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Algal blooms in potable water supplies are becoming an increasingly prevalent and
serious water quality problem around the world. In addition to precipitating taste
and odor problems, blooms damage the environment, and some classes like cyano-
bacteria (blue-green algae) release toxins that can threaten human health, even
causing death. There is a recognized need in the water industry for models that can
accurately forecast in real-time algal bloom events for planning and mitigation pur-
poses. In this study, using data for an interconnected system of rivers and reservoirs
operated by a New Jersey water utility, various ANN models, including both discrete
prediction and classification models, were developed and tested for forecasting counts
of three different algal classes for one-week and two-weeks ahead periods. Predictor
model inputs included physical, meteorological, chemical, and biological variables,
and two different temporal schemes for processing inputs relative to the prediction
event were used. Despite relatively limited historical data, the discrete prediction
ANN models generally performed well during validation, achieving relatively high
correlation coefficients, and often predicting the formation and dissipation of high
algae count periods. The ANN classification models also performed well, with average
classification percentages averaging 94 percent accuracy. Despite relatively limited
data events, this study demonstrates that with adequate data collection, both in terms
of the number of historical events and availability of important predictor variables,
ANNs can provide accurate real-time forecasts of algal population counts, as well as
foster increased understanding of important cause and effect relationships, which
can be used to both improve monitoring programs and forecasting efforts. 
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INTRODUCTION 

Although there is general consensus among sci-
entists that the incidence of algal blooms (AB)
world-wide is increasing at an alarming rate
(Smith et al., 2006), and the detrimental effects of
these blooms on the environment and water sup-
plies are well documented, controversy remains
over the important factors and mechanisms res-
ponsible for their occurrence, and the most effec-
tive means for both modeling and forecasting this
phenomena. Given the multitude, interplay, and
complexity of various weather, water quality, bio-
logical, and hydrologic factors, many of which will
vary over space and/or time, complicated by ran-
dom events, some researchers argue that there
are no fast and true “rules” for predicting algal
biomass and blooms. Researchers recognize that
reliance upon mechanistic models for predicting
algal biomass is insufficient, given our inadequate
“level of understanding of how these complicated
ecological systems work” (Pelley, 2005). 

Researchers have identified fundamental “nutri-
ent” variables, primarily nitrogen and phospho-
rous, as “limiting” to the growth of algae. Because
nitrogen and phosphorous are often strongly cor-
related with the quantity of algal biomass in
water systems, researchers frequently develop
models that predict algal biomass as a function
of one or more of these compounds. Limiting the
models to such highly reduced input-output rela-
tionships, while efficient and sometimes effective,
not only ignores the complexity of processes that
determine nutrient levels, but also overlooks the
myriad of other factors that can influence algal
biomass. For example, nitrogen may originate
from a number of different sources, and its chemi-
cal form and concentration is dictated by differ-
ent nitrogen processes, such as nitrification, which
depends upon the presence of certain bacterial
organisms. In some water systems, nutrients that
might otherwise be considered limiting on the
resident algal populations appear to persist within
a range of concentrations that does not signifi-
cantly affect the organisms.

Further complicating the dynamics of algal
populations are the variety of physical and biolo-
gical factors that influence the formation and
dissipation of algal blooms. Sunlight is essential
for the development of these photosynthetic organ-
isms, and the amount of light that penetrates the

water column is controlled by a number of factors,
each of which may have multiple effects upon the
system. For example, precipitation not only re-
flects a lower sunlight factor, but also influences
the amount of turbidity in the water column via
sediment transfer from rainfall run-off. The degree
of run-off depends not only upon the quantity of
precipitation, but also the size and characteristics
of the watershed. Precipitation also increases sur-
face water flow velocities which can stir up and
suspend sediments from the bottom and scour
sediments from the banks. Other factors that
influence algal levels, like dissolved oxygen are
similarly affected by other conditions of the sys-
tem, such as water temperature, wind speed and
direction, and the presence of other competing or
even predatory organisms.

In a publication by the American Water Works
Association Research Foundation entitled “Early
Warning Management of Surface Water Taste
and Odor Events” (Taylor et al., 2006), the authors
evaluate six existing mechanistic-based computer
simulation models used by the water industry “to
predict the timing, magnitude, and duration of
taste and odor events” associated with algal popu-
lations. The authors discount four of the models
on the basis that they are not capable of simulat-
ing detailed hydrodynamic conditions, such as
stratification and mixing, which influence algal
populations. The authors assert: “A good program
must be able to model many water quality vari-
ables so that it can simulate a wide range of reser-
voirs.” They note that only the two most advanced
models can simulate three algae classes. However,
they caution: “it is a very involved process that
requires extensive data collection and model cali-
bration and validation. The large front-end effort
precludes these models from being used within
time frames required for managing specific taste
and odor events.” The authors carefully draw a
distinction between simulation of algae growth,
which two of the mechanistic models can perform
“reasonably well”, and the associated taste and
odor problems caused by gesomin production and
release from “blue-green algae concentrations.”

As an alternative paradigm to mechanistic
models often used for forecasting algal blooms,
artificial neural networks (ANNs) were used in
this study. In this study, various ANN algal fore-
casting models were developed for three surface
water sampling stations monitored as part of a
drinking water supply system of interconnected
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rivers and reservoirs located in northeastern New
Jersey. Using weather, water quality, hydrologic,
and biological input variables, counts for three
different algal classes were forecasted one-week
and two-weeks ahead. The algal classes consider-
ed in this study included the toxic cyanobacteria,
better known as blue-green algae, chrysophyta
(gold algae), and chlorophyta (green algae) classes. 

There is previous work in the scientific litera-
ture where ANNs were developed and tested for
predicting algal blooms. Rechnagel and others
(1997) applies the technology to four different
freshwater systems. The paper first introduces
the complexity and non-linearity of algal bloom
dynamics and used at least six and up to ten years
of what appear to be weekly data consisting of
limiting nutrients, water temperature, light con-
ditions, and, in one case, density data of zooplank-
ton groups to train the ANN models to predict phy-
toplankton organisms. Maier and others (1998)
forecasted cyanobacteria in the River Murray
using seven years of weekly data, consisting of
eight input variables, was used to provide fore-
cast algae counts four weeks into the future. As
in the work presented in this paper, the authors
concluded that adequate nutrients were available
for algal growth, and hence were not limiting fac-
tors for the river system studied. Lee and others
(2003) developed ANNs to predict algae bloom
dynamics of a coastal water system using water
quality data that could be used in real-time. Kim
and others (2012) used ANNs to forecast algae in a
surface water reservoir using hydrologic, weather,
and water quality data collected from an auto-
matic data collection system. 

The three primary study objectives in this pro-
ject were: 1) to assess the feasibility of using arti-
ficial neural networks (ANNs) as a real-time tool
for accurately forecasting algae counts of three
species, in surface water systems; 2) identify criti-
cal climate, hydrologic, and water quality factors
(i.e. variables) that may influence algae levels; 3)
related to points 1 and 2 above; 3) assess the natu-
ral time evolution of algae populations, which is
particularly relevant to real-time prediction capa-
bility. 

This research differs from previous work in that
two different ANN paradigms were developed and
tested; multiperceptron nets for predicting final
algal counts as a single (i.e. discrete) numerical
output value, and radial basis function nets for
predicting the bin or classification range of values

(pre-specified) within which final algal counts
would fall. In addition, two different time schemes
were used for assigning input variable values with
their corresponding final algal counts; for the
first case, model input values corresponded with
measurements taken at the beginning of the pre-
diction period, which would be most applicable
for real-time forecasting, and for the second case,
input value measurements generally correspond-
ed with the conclusion of the prediction period.
Lastly, two different data sets were used; the first
consisting of more input variables, but fewer his-
torical data events, and the second excluded five
select water quality variables that were measur-
ed less frequently, but consisting of more histori-
cal data events. 

ARTIFICIAL NEURAL NETWORKS

ANN architecture (Fig. 1) is based upon Kolmo-
gorov’s theorem (Sprecher, 1965; Hecht-Nielsen,
1987) which asserts that any continuous function
(in this case algal counts) can be represented
exactly by a three-layer, feed-forward neural net-
work with n elements in the input layer, 2n++1
elements in the hidden layer, and m elements in
the output layer, where n and m are arbitrary
positive integers. The presence of common arcs
in its architecture allows ANN to identify impor-
tant inter-relationships that may exist between
output variables. ANN technology is a compelling
alternative to physical-based modeling approaches
(Poulton, 2001). ANN “learns” system behavior by
processing representative data through its archi-
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Fig. 1. Architecture for a simple multi-perceptron ANN.
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tecture. ANN is different from physical-based
models because it does not rely upon the govern-
ing physical laws for making its predictions, and
consequently, traditional model parameters are
often not required for ANN development and ope-
ration. 

In this study, 50% of the available data was
used for “training,” that is to “learn” cause and
effect relationships if present. Another 25% of
the data was used to “verify” the model, to guard
against over-training or over-fitting the data. Fol-
lowing training, the remaining 25% of the data
was used to validate or assess how well the model
learned to generalize system behavior. During
training, data patterns are processed through the
ANN and “connection weights” are adaptively
adjusted until a minimum acceptable error bet-
ween the ANN-predicted output and the actual
output is achieved. At this point, the ANN has
“learned” to predict the system behavior of inter-
est (in this case algal counts or classes) in res-
ponse to the various input parameter values.

There are a variety of ANN model design fea-
tures and options. To design an appropriate model,
a variety of factors must be considered, including
the functional form of the transfer functions, the
number of hidden layers and nodes in the archi-
tecture, the most appropriate set of input vari-
ables, and the algorithm(s) used to minimize the
objective function (i.e. training error). This process
is typically conducted in an iterative manner
within the context of professional judgment and
modeling experience. For example, selection of an
appropriate set of input parameters during initial
ANN development requires a basic understand-
ing of the governing system dynamics (e.g., factors
known to influence AB). However, a “sensitivity
analysis,” in conjunction with trial and error, can
help the modeler converge on the most appropri-
ate and feasible set of predictor variables. The
sensitivity analysis, which quantifies the relative
importance of each input variable for accurately
predicting each output variable, can be used in
lieu of common statistical methods. 

ANNs require sufficient data that spans the
range of expected system conditions to allow
robust learning. Based upon the number of input
and output parameters, heuristic equations were
used to estimate the minimum number of train-
ing data sets required for robust model develop-
ment. Calculated estimates of the number of train-
ing events (data sets) necessary for robust train-

ing in this study ranged from 200 to 500, depend-
ing upon the ANN model used. Because of the
number and complexity of environmental factors
and their interactions which control AB dynamics,
and given the expected “noise” in the data, the
number of required training data sets is probably
closer to 500. In this study, the number of data
sets available in this study was well below 200. 

STUDY AREA AND DATA

Fig. 2 represents the system modeled in this
project, where for water security reasons, speci-
fics are omitted. Two rivers and a reservoir sup-
ply water to the water treatment plant (WTP).
River A flows into River B upstream of the WTP’s
intake canal, while River B water is gravity fed
to the WTP intake by way of the canal. Rivers A
and B have historically exhibited variable and
unique water quality characteristics that impart
different treatment challenges. River B is consi-
dered to be of lower water quality because of more
numerous upstream contaminant sources. How-
ever, River A has a higher incidence of AB events.

Because of their desire to forecast algae blooms
and monitor overall water quality, the utility has
an extensive watershed water quality monitoring
program in place to assist with decision making
for source water selection and prediction of water
quality changes. Grab and online sample data are
supplemented by United States Geological Sur-
vey flow and water quality monitoring stations
located throughout the watershed. The existing
algal monitoring program consists of analyzing
key water quality parameters and correlating

Emery A. Coppola Jr., Adorable B. Jacinto, Tom Atherholt, Mary Poulton, Linda Pasquarello, Ferenc Szidarvoszky and Scott Lohbauer4

Fig. 2. Raw water configuration and station locations.
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changes in concentrations to predictions of algal
concentrations.

Previously collected (1999~2004) water quality
data from Stations 100, 101, and 612 were provid-
ed by the utility and used for model development
and assessment. A total of 302 measurement
events consisting of water quality, hydrologic,
weather, pumping, and extraction data collected
over the period January 1999 to August 2004
were used in the study. Climate data was obtain-
ed from National Oceanographic and Atmospheric
Administration (NOAA) and included total daily
precipitation, average daily temperature, wind
speed, and wind direction. There was no available

data for solar radiation; hence data for sky cover,
heating degree days, and length of day were also
used, with values for the two first variables also
obtained from NOAA, and the last obtained from
sunrise and sunset tables obtained on-line.

A listing of the model variables input values, as
well as their minimum, average, and maximum
values by station, are presented in Table 1. 

System conditions for algal populations, water
quality, physical, and weather conditions vary by
season. Representative time-series figures depict-
ing algal counts for the three classes are plotted
versus dissolved oxygen, nitrate, and water tem-
perature in Figs. 3 through 5, respectively, provid-
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Table 1. Statistical tabulation for all model variables used by Station. 

Parameter* Unit
Station 100 Station 101 Station 612

Min1 Ave2 Max3 Min1 Ave2 Max3 Min1 Ave2 Max3

Water Temperature �C 0.1 13.6 25.8 0.6 13.5 26.5 0.0 13.2 27.8
pH 6.4 7.4 8.8 6.3 7.3 8.5 7.0 7.6 9.8
Turbidity NTU 0.0 4.0 22.5 2.6 9.7 22.1 1.7 7.1 55.0
Alkalinity mg L-1 as CaCO3 0.0 41.6 103.5 6.4 72.7 106.0 30.0 68.1 110.0
Total Hardness mg L-1 as CaCO3 38.0 101.5 194.0 30.0 116.3 192.0 60.0 108.6 220.0
Conductivity umhos cm-1 168 432 1312 203 540 1307 253 445 756
Color umhos cm-1 NM4 NM4 NM4 15.1 44.1 153.0 12.0 34.8 195.0
Dissolved Oxygen mg L-1 4.8 10.5 16.2 5.3 9.6 15.1 4.8 10.3 15.5
Biochemical Oxygen Demand mg L-1 0.7 4.2 10.2 0.4 4.2 8.1 4.8 10.3 15.5
Chloride mg L-1 25.0 85.1 283.0 52.0 109.0 192.0 44.0 87.8 174.0
Sulfate mg L-1 10.3 22.2 55.7 12.2 27.7 61.1 10.6 20.2 39.3
T.Phosphorus/Orthophosphate mg L-1 0.0 0.3 1.7 0.0 0.7 2.5 0.0 0.2 1.5
Nitrite/Nitrate mg L-1 0.0 1.6 5.3 0.4 2.3 6.2 0.4 1.4 3.7
Ammonia mg L-1 0.0 0.1 0.4 0.0 0.1 0.4 0.0 0.1 0.2
Total Suspended Solids mg L-1 1.0 13.4 47.0 NM4 NM4 NM4 NM4 NM4 NM4

UV-254 cm-1 0.1 0.1 0.3 0.1 0.2 1.0 0.1 0.1 0.1
Total Organic Carbon mg L-1 2.7 4.8 11.3 3.1 6.2 11.4 0.0 3.8 8.5
Prediction Period’s Precipitation Total cm 0.0 1.8 9.1 0.0 2.0 11.7 0.0 2.3 20.6
Prediction Period’s Lagged Precipitation Total cm 0.0 2.3 20.83 0.0 2.0 7.6 0.0 1.5 7.62
Wind Direction 0~360� 52 211 301 93 214 293 120 219 299
Wind Speed km hr-1 7.6 11.9 18.0 7.6 11.5 17.5 7.9 12.2 17.5
Heating Degree Days �C 0.0 12.5 45.6 0.0 12.6 38.2 0.0 13.0 45.5
Sky Cover 0.9 4.3 9.1 0.6 4.2 8.7 0.4 4.2 8.0
Length of Day hour 9.2 12.5 15.1 9.3 12.6 15.1 5.3 12.2 15.1
River A Streamflow m3 sec-1 0.85 15.5 104.3 1.1 10.6 72.7 0.85 10.7 117.8
River A Extraction million m3 day-1 0.0 0.13 0.23 0.0 0.12 0.22 0.0 0.11 0.23
River B Extraction million m3 day-1 0.0 0.07 0.34 0.0 0.09 0.34 0.0 0.10 0.33
Reservoir A Extraction million m3 day-1 0.0 0.001 0.07 0.0 0.002 0.07 0.0 0.002 0.07
Pumping Station 1 Extraction million m3 day-1 0.0 0.002 0.10 0.0 0.006 0.12 0.0 0.003 0.11
Total Algae Count Cells mL-1 8 167 1520 8 115 572 16 187 842
Chrysophyta Count Cells mL-1 0 84 656 0 67 200 0 88 616
Cyanophyta Count Cells mL-1 0 30 1364 0 6 180 0 47 760
Chlorophyta Count Cells mL-1 0 49 608 0 40 304 0 48 420
1minimum, 2average, 3maximum, 4not measured
*Total Amorphous Materials measured as Light, Medium and Heavy



ing an overview of the complexity and a general
lack of transparent consistency in system condi-
tions and algal counts. 

MODELING METHODOLOGY

Because reliable weather forecasts generally do
not extend beyond one- to two-week time periods,
ANN models were developed for one-week and
two-week ahead forecasting periods. Two differ-
ent time schemes were used for computing the
values of the ANN model inputs variables. The
first, referred to as “original”, consisted of input
values measured at the beginning of the predic-
tion periods. The second, referred to as “revised”,
used input values measured at the end of the pre-

diction period, coinciding with the final or predict-
ed algal count. 

Both the original and revised approaches were
assessed using two distinct data sets. The first
set consisted of a smaller number of time-coinci-
dent events, but which included a higher number
of input variables. The second set, by excluding
several less-frequently-sampled water quality
parameters (total phosphorous/ortho-phosphate,
nitrite/nitrate, sulfate, and total organic carbon
for all stations and biological oxygen demand for
Stations 101 and 612), consisted of a larger num-
ber of data events but with fewer input variables. 

In order to help identify potentially important
predictor variables, time series were developed
depicting different variables versus algae counts.
For example, Figs. 3, 4, and 5 depict oxygen con-
centrations, temperature, and nitrite/nitrate ver-
sus algae counts, respectively. As can be seen,
there are not obvious relationships between poten-
tial predictor and prediction (i.e., algae count)
variables. In addition, a sensitivity analysis was
performed by computing a sensitivity ratio, math-
ematically defined as the root mean squared error
of ANN predictions without a particular input
variable divided by the mean squared error of
ANN predictions with the input variable. For
example, a sensitivity ratio of 2.0 indicates that
removing the particular input variable increases
the RMSE by a factor of 2, while a value of 1.06
indicates that inclusion of the predictor variable
has minimal effect on improving prediction accu-
racy. 

As an alternative to developing ANN models
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Fig. 3. Total algae counts versus dissolved oxygen concen-
tration measured at Station 101.
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Fig. 4. Total algae counts versus temperature measured
at Station 612.
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Fig. 5. Total algae counts versus Nitrite/Nitrate concentra-
tion measured at Station 100.
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that explicitly predict final measured algal counts,
RBF nets were developed to predict the pre-spe-
cified bins or classification ranges within which
the final measured algal counts fall. For this
modeling exercise, the following four bins or clas-
sification ranges were selected: 0 to 10 counts, 11
to 50 counts, 51 to 200 counts, and 201 and above
counts. The original model input sets were used
and included both the complete and reduced para-
meter sets. Station 101 was used for predicting
chlorophytes bins one-week ahead and chryso-
phytes bins two-weeks ahead. Station 612 was
selected for predicting chrysophytes bins one-week
ahead and chlorophytes bins two-weeks ahead. 

The ANN models consisted of multiple input
variables to predict a single output variable, con-
sisting of the algae counts for the multi-percep-
tron ANN, and the bin or classification range for
the radial basis nets. Various different combina-
tions of input variables listed in Table 1 were used
to forecast the final algae counts at the end of the
forecast period (i.e., one week ahead or two weeks
ahead), and using sensitivity analyses, input
variables were reduced. The number of historical
data events available for the different station and
algae ranged from just 32 to 270. The profession-
al software Statistica was used to perform the
ANN modeling work presented in this study. 

RESULTS 

The models developed with both one-week and
two-week ahead prediction periods accurately
predicted formation and dissipation of AB events,
as well as the relative increase and decrease in
cell counts. On the basis of validation correlation
coefficients, the ANN models that used inputs
measured at the beginning of the prediction period
slightly outperformed the models that used inputs
measured at the conclusion of the prediction
periods, but the difference in validation perfor-
mance was not significant (r==0.72 vs. 0.69). The
importance of this result, however, indicates that
real-time predictive accuracy can be achieved. 

The models that forecasted discrete algal count
values achieved the highest performance in most
cases when the less-frequently measured water
quality parameters were excluded as input vari-
ables (r of 0.77 versus 0.63). In this case, r repre-
sents the correlation coefficient. Correlation coef-
ficients range between -1 and ++1, with values

close to ++1 indicating a strong positive correla-
tion between predicted and measured values, and
values closer to 0 indicating little correlation.

Figs. 6 through 8 provide a visual assessment
of model performance for three representative
cases, where the validation data show the initial
algal count corresponding to the prediction event.
The validation series labeled “initial” in the fig-
ures designates the initial count measured at the
beginning of the prediction period, “final” desig-
nates the final algal count measured at the con-
clusion of the prediction period (i.e., that which is
being predicted), and “ANN” designates the final
count predicted by the ANN model. 

The models that predicted algal concentration
ranges (i.e., classification nets or “bins”) rather
than actual counts also achieved high forecasting
performance. Three of the eight models that in-
cluded all of the input parameters achieved 100
percent classification accuracy. The worst-per-
forming net correctly classified 83 percent of the
events. For this approach, the models that includ-
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Fig. 6. Time-series plots of measured Chlorophyte counts
and ANN one-week ahead predicted values for (a)
complete and (b) validations data sets at Station
101 (Revised Model excluding five water quality
inputs).
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ed the less-frequently-sampled inputs (phosphate,
nitrate, etc.) slightly outperformed those that did
not, with correct classification percentages of 96
and 92 percent, respectively. However, the models
that excluded these parameters had approximate-
ly three times the number of available data sets
and hence had more events which bordered two
adjacent classification bins. All incorrect classifi-
cations for all models occurred within an adjacent
bin (e.g., a measured count of 8 which placed the
count in the 0~10 bin, while the predicted bin
was 11~50). Given the inherent imprecision of
algal counts (Maier et al., 1998) this performance
is more than acceptable for informed water utility
decisions. 

CONCLUSIONS

The results of this study demonstrate that ANN
technology can be used to accurately forecast algal
population counts in real-time for periods ranging

from one-week to two-weeks ahead using readily
available water quality, hydrologic, weather, and
water extraction data. The major findings of this
research include: 

�Despite a very limited number of available data
sets, the ANN models performed well in most
cases during validation, accurately predicting
large changes in algal cell populations. The
degree of accuracy was surprising, given the
complexity and non-linear behavior of algal
populations, inherent data “noise”, and the rela-
tively small number of historical events avail-
able for model training.
�The ANN models that forecasted algal count

values (instead of classification ranges) achieved
the highest performance when the less-frequ-
ently measured water quality variables (phos-
phate, nitrate, sulfate, TOC and BOD) were
excluded as input variables. This may be due
to a data quantity issue rather than inherent
importance of these parameters to algal cell
growth, but it could also be that, at the concen-
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Fig. 7. Time-series plots of measured Chlrophyte counts
and ANN one-week ahead predicted values for (a)
complete and (b) validations data set at Station
101 (Original Model excluding five water quality
inputs).

450

400

350

300

250

200

150

100

50

0

Measured
ANN

Initial
Final
ANN

350

300

250

200

150

100

50

0

(a)

(b)

0 10 20 30 40 50 60 70 80 90 100 110

Prediction event

0 10 20 30 40 50 60 70 80 90 100 110

Prediction event

A
lg

ae
 c

ou
n

ts
(c

el
ls

 m
L
-

1 )
A

lg
ae

 c
ou

n
ts

(c
el

ls
 m

L
-

1 )

Fig. 8. Time-series plots of measured Cyanobacteria counts
and ANN two-week ahead predicted values for (a)
complete and (b) validations data set at Station
612 (Original Model excluding five water quality
inputs).
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trations at this WTP, these parameters were
not “limiting” algal growth.
�The Radial Basis Function classification net

models classified the counts into the correct
concentration ranges with very high accuracy,
averaging 94 percent. 
�The ANN models developed with inputs mea-

sured at the beginning of the one-week and two-
week ahead prediction periods accurately pre-
dicted formation and dissipation of algal bloom
events, as well as relative increase and decre-
ases, indicating that there are natural time
lags between system conditions and algal popu-
lation responses. That is, algal populations may
on average evolve predictably in response to
system conditions, and the trajectory of algal
counts over one and two-week forecast periods
can be accurately forecasted on the basis of
real-time measurements. This may also reflect
that open water conditions as influenced by
external factors like weather do not typically
change significantly in the short-term (e.g.
weekly or even bi-weekly), and thus evolving
algal populations are not prone to abrupt devi-
ations from trajectory paths. The relatively
small changes in conditions over prediction
periods is supported by the statistical analyses
of the data. 
�The small number of historical data events

limits the accuracy of the sensitivity analyses
performed by measuring the relative increase in
RMSE by excluding each input variable. How-
ever, some basic trends did emerge, with the
most important possibly being the relative non-
importance of the select water quality variables
excluded from some models. In particular, the
two “limiting nutrients”, total phosphorous/
orthophosphate and nitrite/nitrate, generally
did not rank high as important predictor vari-
ables. This relative non-importance is weakly
supported by the better performance of the
models that excluded these variables. The time-
series comparison of these parameters versus
algal population also does not reveal an obvi-
ous relationship between concentrations and
counts.

In conclusion, ANN-based real-time forecasting

capability can be valuable for anticipating algal
blooms before they occur and implementing pro-
active measures for mitigating such blooms accord-
ingly, such as adding chemical treatments, switch-
ing to alternative water sources, and issuing
health warnings. In addition, ANN technology
can be used to help better understand the under-
lying. These forecasting models also provide value
added to expensive data collection systems, and
may even be used to optimize sampling strategies,
potentially reducing costs. 
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