• 제목/요약/키워드: Real Number Optimization

검색결과 204건 처리시간 0.034초

동일하지 않는 병렬기계 일정계획을 위한 휴리스틱 방법 (A Hueristic Algorithm for Nonidentical Parallel Machines Scheduling)

  • 전태웅;박해천
    • 산업경영시스템학회지
    • /
    • 제23권59호
    • /
    • pp.37-42
    • /
    • 2000
  • The parallel machines scheduling problems is one of the combinatorial optimization problems that often occurs in the real world. This problem is classified into two cases, one of which is the case which processing time are identical and the other, nonidentical. Not so much researches have been made on the case that nonidentical parallel machines scheduling problem. This study proposes Tabu Search methods for solving parallel machines scheduling problems related to due dates: minimizing mean tardiness, minimizing the number of tardy jobs, minimizing the maximum tardiness.

  • PDF

진화 알고리즘을 위한 가상 클러스터 기반 재조합 연산자 및 세대차 모델 (Virtual Cluster based Recombination Operator and Generation Gap Model for Evolutionary Algorithm)

  • 최준석;서기성
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2008년도 춘계학술대회 학술발표회 논문집
    • /
    • pp.288-291
    • /
    • 2008
  • 본 논문은 실수 진화 알고리즘에 대해서 가상의 클러스터를 이용한 재조합 연산자 및 새로운 세대차 모델을 소개한다. 가상 클러스터의 자가 적응적인 크기 변화를 통해 자손의 생성범위를 적절히 조절하고, 선택과 대치를 포함한 진화방식을 개선하여 효율적인 세대차 크기를 구함으로서, 개체의 다양성 유지 및 탐색성능의 향상을 꾀하였다. 제안된 방법을 벤치마크 테스트 문제에 적용하여 G3 알고리즘과 CMA-ES 등과 성능을 비교하였다.

  • PDF

A MARKOV DECISION PROCESSES FORMULATION FOR THE LINEAR SEARCH PROBLEM

  • Balkhi, Z.T.;Benkherouf, L.
    • 한국경영과학회지
    • /
    • 제19권1호
    • /
    • pp.201-206
    • /
    • 1994
  • The linear search problem is concerned with finding a hiden target on the real line R. The position of the target governed by some probability distribution. It is desired to find the target in the least expected search time. This problem has been formulated as an optimization problem by a number of authors without making use of Markov Decision Process (MDP) theory. It is the aim of the paper to give a (MDP) formulation to the search problem which we feel is both natural and easy to follow.

  • PDF

압축 영상의 블록화 제거를 위한 적응적 고속 영상 복원 필터 (An Adaptive Fast Image Restoration Filter for Reducing Blocking Artifacts in the Compressed Image)

  • 백종호;이형호;백준기;윈치선
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 1996년도 학술대회
    • /
    • pp.223-227
    • /
    • 1996
  • In this paper we propose an adaptive fast image restoration filter, which is suitable for reducing the blocking artifacts in the compressed image in real-time. The proposed restoration filter is based on the observation that quantization operation in a series of coding process is a nonlinear and many-to-one mapping operator. And then we propose an approximated version of constrained optimization technique as a restoration process for removing the nonlinear and space varying degradation operator. We also propose a novel block classification method for adaptively choosing the direction of a highpass filter, which serves as a constraint in the optimization process. The proposed classification method adopts the bias-corrected maximized likelihood, which is used to determine the number of regions in the image for the unsupervised segmentation. The proposed restoration filter can be realized either in the discrete Fourier transform domain or in the spatial domain in the form of a truncated finite impulse response (FIR) filter structure for real-time processing. In order to demonstrate the validity of the proposed restoration filter experimental results will be shown.

  • PDF

이산 설계변수를 포함하고 있는 자동차용 휠 베어링 유닛의 설계방법 (Design Methodology of Automotive Wheel Bearing Unit with Discrete Design Variables)

  • 윤기찬;최동훈
    • 한국자동차공학회논문집
    • /
    • 제9권1호
    • /
    • pp.122-130
    • /
    • 2001
  • In order to improve the efficiency of the design process and the quality of the resulting design, this study proposes a design method for determining design variables of an automotive wheel-bearing unit of double-row angular-contact ball bearing type by using a genetic algorithm. The desired performance of the wheel-bearing unit is to maximize system life while satisfying geometrical and operational constraints without enlarging mounting spae. The use of gradient-based optimization methods for the design of the unit is restricted because this design problem is characterized by the presence of discrete design variables such as the number of balls and standard ball diameter. Therefore, the design problem of rolling element bearings is a constrained discrete optimization problem. A genetic algorithm using real coding and dynamic mutation rate is used to efficiently find the optimum discrete design values. To effectively deal with the design constraints, a ranking method is suggested for constructing a fitness function in the genetic algorithm. A computer program is developed and applied to the design of a real wheel-bearing unit model to evaluate the proposed design method. Optimum design results demonstrate the effectiveness of the design method suggested in this study by showing that the system life of an optimally designed wheel-bearing unit is enhanced in comparison with that of the current design without any constraint violations.

  • PDF

유전자 알고리즘을 이용한 이족 보행 로봇의 최적 설계 및 최적 보행 궤적 생성 (Optimal Gait Trajectory Generation and Optimal Design for a Biped Robot Using Genetic Algorithm)

  • 권오흥;강민성;박종현;최무성
    • 제어로봇시스템학회논문지
    • /
    • 제10권9호
    • /
    • pp.833-839
    • /
    • 2004
  • This paper proposes a method that minimizes the consumed energy by searching the optimal locations of the mass centers of links composing of a biped robot using Real-Coded Genetic Algorithm. Generally, in order to utilize optimization algorithms, the system model and design variables must be defined. Firstly, the proposed model is a 6-DOF biped robot composed of seven links, since many of the essential characteristics of the human walking motion can be captured with a seven-link planar biped walking in the saggital plane. Next, Fourth order polynomials are used for basis functions to approximate the walking gait. The coefficients of the fourth order polynomials are defined as design variables. In order to use the method generating the optimal gait trajectory by searching the locations of mass centers of links, three variables are added to the total number of design variables. Real-Coded GA is used for optimization algorithm by reason of many advantages. Simulations and the comparison of three methods to generate gait trajectories including the GCIPM were performed. They show that the proposed method can decrease the consumed energy remarkably and be applied during the design phase of a robot actually.

웜기어의 강도평가 및 설계시스템 개발에 관한 연구 (Development of Durability Estimation and Design Systems of Worm Gears)

  • 정태형;백재협
    • 한국자동차공학회논문집
    • /
    • 제5권1호
    • /
    • pp.207-216
    • /
    • 1997
  • We developed the durability estimation and design systems to minimize the volume, considering the durability, efficiency, and design requirements of worm gears. That is, we consider each kind of factors affecting on durability on the basis of AGMA Standard for the cylindrical and double-enveloping worm gears. We also estimate input power on the basis of wear and durability, bending strength and deflection of worm shaft, and we developed the durability estimation and design systems of power transmission worm gears introducing the optimal design method on the personal computer to be easily used in field. Also, we developed a method which converts the design variables obtained from the optimal design method to integer values(number of worm threads, number of worm threads, number of worm wheel teeth, etc.,) to be used in real design and production. The developed durability estimation and design method can be easily applied to the design of worm gears used as power transmission devices in machineries and is expected to be used for weight minimization of worm gear unit.

  • PDF

A Heuristic Algorithm for Designing Near-Optimal Mobile Agent Itineraries

  • Gavalas Damianos
    • Journal of Communications and Networks
    • /
    • 제8권1호
    • /
    • pp.123-131
    • /
    • 2006
  • Several distributed architectures, incorporating mobile agent technology, have been recently proposed to answer the scalability limitations of their centralized counterparts. However, these architectures fail to address scalability problems, when distributed tasks requiring the employment of itinerant agents is considered. This is because they lack mechanisms that guarantee optimization of agents' itineraries so as to minimize the total migration cost in terms of the round-trip latency and the incurred traffic. This is of particular importance when MAs itineraries span multiple subnets. The work presented herein aspires to address these issues. To that end, we have designed and implemented an algorithm that adapts methods usually applied for addressing network design problems in the specific area of mobile agent itinerary planning. The algorithm not only suggests the optimal number of mobile agents that minimize the overall cost but also constructs optimal itineraries for each of them. The algorithm implementation has been integrated into our mobile agent framework research prototype and tested in real network environments, demonstrating significant cost savings.

IP기반 H.264 디코더 설계를 위한 동기화 파이프라인 최적화 (An optimization of synchronous pipeline design for IP-based H.264 decoder design)

  • 고병수;공진흥
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.407-408
    • /
    • 2008
  • This paper presents a synchronous pipeline design for IP-based H.264 decoding system. The first optimization for pipelining aims at efficiently resolving the data dependency due to motion compensation/intra prediction feedback data flow in H.264 decoder. The second one would enhance the efficiency of execution per each pipelining stage to explore the optimized latency and stage number. Thus, the 3 stage pipeline of CAVLD&ITQ|MC/IP&Rec.|DF is obtained to yield the best throughput and implementation. In experiments, it is found that the synchronous pipelined H.264 decoding system, based on existing IPs, could deal with Full HD video at 125.34MHz, in real time.

  • PDF

퍼지 조립라인밸런싱 문제 해결을 위한 주노드법에 기초한 휴리스틱 절차 개발 (The development of critical node method based heuristic procedure for Solving fuzzy assembly-line balancing problem)

  • 이상완;박병주
    • 산업경영시스템학회지
    • /
    • 제22권51호
    • /
    • pp.189-197
    • /
    • 1999
  • Assembly line balancing problem is known as one of difficult combinatorial optimization problems. This problem has been solved with linear programming, dynamic programming approaches. but unfortunately these approaches do not lead to efficient algorithms. Recently, genetic algorithm has been recognized as an efficient procedure for solving hard combinatorial optimization problems, but has a defect that requires long-run time and computational complexties to find the solution. For this reason, we adapt a new method called the Critical Node Method that is intuitive, easy to understand, simple for implementation. Fuzzy set theory is frequently used to represent uncertainty of information. In this paper, to treat the data of real world problems we use a fuzzy number to represent the duration and Critical Node Method based heuristic procedure is developed for solving fuzzy assembly line balancing problem.

  • PDF