• Title/Summary/Keyword: Reactive gas

Search Result 536, Processing Time 0.028 seconds

Effects of Oxygen Partial Pressure on ITO Thin Films PrePared by Reactive dc Magenetron Sputtering (반응성 dc 미그네트론 스퍼링법으로 제조된 IPO박막에 미치는 산소분압의 영향)

  • 신성호;신재혁;박광자;김현우
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.3
    • /
    • pp.171-176
    • /
    • 1998
  • Transparent conducting ITO (Indium Tin Oxide) thin films were prepared on soda lime glass by reactive dc magnetron sputtering mothod. The maaterial properties were measured by the X-ray diffraction meter (XRD) and atomic force microscopy (AFM) scanning. As a resuIts, the (400) park for $O_2 gas rate 2% grows uniquely as the preferred orientaon. However, the (400) peak exists at $O_2 gas rate 5% as well as the (222) peak appears abruptly as the main orietation. Both <100> and <111> grain alignments are consisted simultaneously in the XRE pattern of ITO thin films. The electrical charcteristics were esimated by the electrical resistivity, optical transmission, and Hall mobillty, ect. The resistivity of ITO thin film deposited at 4cm from the substrate center is increased from $2\times10^-4$ to $8\times10^-4\Omega$cm as a function of $O_2$ gas pressure (0~5%). The optical transmission curves with a rising of $O_2$ gas rate become shifted into longer wavelength range.

  • PDF

Effect of Process Parameters on TSV Formation Using Deep Reactive Ion Etching (DRIE 공정 변수에 따른 TSV 형성에 미치는 영향)

  • Kim, Kwang-Seok;Lee, Young-Chul;Ahn, Jee-Hyuk;Song, Jun Yeob;Yoo, Choong D.;Jung, Seung-Boo
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.11
    • /
    • pp.1028-1034
    • /
    • 2010
  • In the development of 3D package, through silicon via (TSV) formation technology by using deep reactive ion etching (DRIE) is one of the key processes. We performed the Bosch process, which consists of sequentially alternating the etch and passivation steps using $SF_6$ with $O_2$ and $C_4F_8$ plasma, respectively. We investigated the effect of changing variables on vias: the gas flow time, the ratio of $O_2$ gas, source and bias power, and process time. Each parameter plays a critical role in obtaining a specified via profile. Analysis of via profiles shows that the gas flow time is the most critical process parameter. A high source power accelerated more etchant species fluorine ions toward the silicon wafer and improved their directionality. With $O_2$ gas addition, there is an optimized condition to form the desired vertical interconnection. Overall, the etching rate decreased when the process time was longer.

Dynamics of Gas-phase Hydrogen Atom Reaction with Chemisorbed Hydrogen Atoms on a Silicon Surface

  • 임선희;이종백;김유항
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.10
    • /
    • pp.1136-1144
    • /
    • 1999
  • The collision-induced reaction of gas-phase atomic hydrogen with hydrogen atoms chemisorbed on a silicon (001)-(2×1) surface is studied by use of the classical trajectory approach. The model is based on reaction zone atoms interacting with a finite number of primary system silicon atoms, which then are coupled to the heat bath, i.e., the bulk solid phase. The potential energy of the Hads‥Hgas interaction is the primary driver of the reaction, and in all reactive collisions, there is an efficient flow of energy from this interaction to the Hads-Si bond. All reactive events occur on a subpicosecond scale, following the Eley-Rideal mechanism. These events occur in a localized region around the adatom site on the surface. The reaction probability shows the maximum near 700K as the gas temperature increases, but it is nearly independent of the surface temperature up to 700 K. Over the surface temperature range of 0-700 K and gas temperature range of 300 to 2500 K, the reaction probability lies at about 0.1. The reaction energy available for the product states is small, and most of this energy is carried away by the desorbing H2 in its translational and vibrational motions. The Langevin equation is used to consider energy exchange between the reaction zone and the bulk solid phase.

Gas chromatographic determination of l-ephedrine and dl-methylephedrine (가스크로마토그라피에 의한 l-에페드린과 dl-메칠에페드린의 정량)

  • 윤용균
    • YAKHAK HOEJI
    • /
    • v.16 no.1
    • /
    • pp.55-64
    • /
    • 1972
  • The determination method of l-ephedrine and dl-methylephedrine by gas chromatography was developed, using reactive alkaline precolumn packed with celite 545 containing KOH. Symmetrical peaks were achieved under the condition, inlet temperature, $180^{\circ}C$-$230^{\circ}C$; column temperature, $180^{\circ}C$- $160^{\circ}C$; carrier gas flow rate, 30ml/minute. The peaks of the salts coincided with those of bases. When this method was applied to preparations, using d-dimethylaminobenzaldehyde as inner standard, good results were obtained. The relative retention times of l-ephedrine and dl-methylephedrine to p-dimethyl aminobenzaldehyde were 0.50 and 0.65 respectively.

  • PDF

High speed deposition technique of YSZ film for the superconducting tape (고온초전도테이프 제작을 위한 YSZ 박막의 고속증착방법)

  • Kim Ho-Sup;Shi Dongqui;Chung Jun-Ki;Ko Rock-Kil;Ha Hong-Soo;Song Kyu-Jeong;Youm Do-Jun;Park Chan
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.3
    • /
    • pp.27-32
    • /
    • 2004
  • High temperature superconducting coated conductor has a structure of /< superconducting layer>//. The buffer layer consists of multi layer, and the architecture most widely used in RABiTS approach is CeO$_2$(cap layer)/YSZ(diffusion barrier layer)/CeO$_2$(seed layer). Evaporation technique is used for the CeO$_2$ layer and DC reactive sputtering technique is used for the YSZ layer, A chamber was set up specially for DC reactive sputtering, Detailed features are as following. A separator divided the chamber into two halves a sputtering chamber and a reaction chamber. The argon gas for sputtering target elements flows out of the cap of sputtering gun, and water vapor for reaction with depositing species spouts near the substrate. Turbo pump is connected with reaction chamber. High speed deposition of YSZ film could be achieved in the chamber. Detailed deposition conditions (temperature and partial pressure of reaction gas) were investigated for the rapid growth of high quality YSZ film.

A Study on Etching Characteristics of Molybdenum Thin Films by Magnetically Enhanced Reactive lon Etching System (자장 강화 반응성 이온 식각 장비를 이용한 몰리브덴 박막의 식각 특성 연구)

  • 김남훈;권광호;김창일;장의구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.1
    • /
    • pp.6-12
    • /
    • 2000
  • In this study, molybdenum thin films were etched with Cl\ulcorner/(Cl\ulcorner+SF\ulcorner) gas mixing ratio in an magneti-cally enhanced reactive ion etching(MERIE) by the etching parameters such as rf power of 250 watts, chamber pressure of 100 mTorr and B-field of 30 gauss. The etch rate was 150nm/min under Cl\ulcorner/(Cl\ulcorner+SF\ulcorner) gas mixing ratio of 0.25. At this time, the selectivity of Mo to SiO\ulcorner, photoresist were respectively 0.94, 0.05. The surface reaction of the etched Mo thin films was investigated with X-ray photoelectron spectroscopy(XPS). It was analyzed that Mo peaks was mainly observed in Mo-O bonds formed MoO\ulcorner compounds and F was detected in Mo-F and O-F bonds. Cl peaks were detected by the peak of Cl 2p\ulcorner in Cl-Mo bonds of MoCl\ulcorner or MoO\ulcornerCl\ulcorner formulas. Almost all of both Cl and S atoms had been com-bined with Mo, respectively.

  • PDF

Formation of Al2O3 Film by Activated Reactive Evaporation Method (활성화 반응 증발법에 의한 Al2O3 박막 형성)

  • Park, Yong-Gwon;Choi, Jae-Ha
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.5
    • /
    • pp.292-296
    • /
    • 2001
  • In this work, an ultra-high vacuum activated reactive evaporation equipment was built. With reaction of Al and oxygen plasma, $Al_2O_3$ was deposited on the surface of etched Al foil. The chamber was evacuated down to $2{\times}10^{-7}$ torr initially. The Ar and $O_2$ gas introduced into the chamber to maintain $5{\times}10^{-5}$ torr during deposition. Ar gas prevents recombining of the ionized oxygen. Evaporation was maintained by electron beam evaporator continuously. Heating filament and electrode were used in order to generate plasma. The substrate bias of -300V was introduced to accelerate deposition of evaporated Al atoms. The composition and morphology of deposited $Al_2O_3$ films were analyzed by x-ray photoelectron spectroscopy(XPS) and atomic force microscopy (AFM), respectively. The Al oxide was formed on the surface of etched Al foil. According to AFM results, the surface morphology of $Al_2O_3$ film indicates uniform feature. Dielectric characteristic was measured as a function of frequency. Measured withstanding voltage and capacitance were 52V and $24{\mu}F/cm^2$, respectively. The obtained $Al_2O_3$ film shows clean condition without contaminants, which could be adapted to capacitor production.

  • PDF

Reactive Ion Etching of a-Si for high yield and low process cost

  • Hur, Chang-Wu
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.3
    • /
    • pp.215-218
    • /
    • 2007
  • In this paper, amorphous semiconductor and insulator thin film are etched using reactive ion etcher. At that time, we experiment in various RIE conditions (chamber pressure, gas flow rate, rf power, temperature) that have effects on quality of thin film. The using gases are $CF_4,\;CF_4+O_2,\;CCl_2F_2,\;CHF_3$ gases. The etching of a-Si:H thin film use $CF_4,\;CF_4+O_2$ gases and the etching of $a-SiO_2,\;a-SiN_x$ thin film use $CCl_2F_2,\;CHF_3$ gases. The $CCl_2F_2$ gas is particularly excellent because the selectivity of between a-Si:H thin film and $a-SiN_x$ thin film is 6:1. We made precise condition on dry etching with uniformity of 5%. If this dry etching condition is used, that process can acquire high yield and can cut down process cost.

A Study on Etching of Molybdenum by MERIE Metal Etcher (MERIE형 금속 식각기에 의한 몰리브덴 식각 연구)

  • 김남훈;김창일;권광호;김태형;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.34-38
    • /
    • 1999
  • In this study, molybdenum thin films were etched with the various Cl$_2$/(Cl$_2$+SF$_{6}$) gas mixing ratio in an magnetically enhanced reactive ion etching(MERIE) by the etching parameter such as rf power of 185 watts, chamber pressure of 40 mTorr and B-field of 80 gauss. The etch rate was 150 nm/min under Cl$_2$/(Cl$_2$+SF$_{6}$) gas mixing ratio of 0.25. At this time, the selectivity of Mo to SiO$_2$, photoresist were respectively 0.94, 0.50. The surface reaction of the etched Mo thin films was investigated with X - ray photoelectron spectroscopy (XPS).PS).

  • PDF

Analysis and Design of Resonant Inverter for Reactive Gas Generator Considering Characteristics of Plasma Load

  • Ahn, Hyo Min;Sung, Won-Yong;Lee, Byoung Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.345-351
    • /
    • 2018
  • This paper analyzes a resonant inverter to generate plasma. The resonant inverter consists of a full bridge converter, resonant network and reactor to generate a magnetic field for plasma generation. A plasma load has very distinct characteristics compared to conventional loads. The characteristics of plasma load are analyzed through experimental results. This paper presents the study on the resonant network, which was performed in order to determine how to achieve a constant current gain. Another important contribution of this study is the analysis of drop-out phenomenon observed in plasma loads which is responsible for unpredictable shutdown of the plasma generator that requires stable operation. In addition, the design process for the resonant network of a plasma generator is proposed. The validity of this study is verified through simulations and experimental results.