• Title/Summary/Keyword: Reactance compensation

Search Result 13, Processing Time 0.031 seconds

2-6 GHz GaN HEMT Power Amplifier MMIC with Bridged-T All-Pass Filters and Output-Reactance-Compensation Shorted Stubs

  • Lee, Sang-Kyung;Bae, Kyung-Tae;Kim, Dong-Wook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.3
    • /
    • pp.312-318
    • /
    • 2016
  • This paper presents a 2-6 GHz GaN HEMT power amplifier monolithic microwave integrated circuit (MMIC) with bridged-T all-pass filters and output-reactance-compensation shorted stubs using the $0.25{\mu}m$ GaN HEMT foundry process that is developed by WIN Semiconductors, Inc. The bridged-T filter is modified to mitigate the bandwidth degradation of impedance matching due to the inherent channel resistance of the transistor, and the shorted stub with a bypass capacitor minimizes the output reactance of the transistor to ease wideband load impedance matching for maximum output power. The fabricated power amplifier MMIC shows a flat linear gain of 20 dB or more, an average output power of 40.1 dBm and a power-added efficiency of 19-26 % in 2 to 6 GHz, which is very useful in applications such as communication jammers and electronic warfare systems.

Design and Implementation of a Laboratory Scale TCSC (모델급 TCSC의 설계 및 구현)

  • Dinh, Minh-Chau;Park, Sang-Min;Kim, Sung-Kyu;Park, Minwon;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.351-352
    • /
    • 2015
  • Thyristor-controlled series capacitor (TCSC) is a power electronic-based device that provides a fast and controllable series compensation of transmission line reactance. To match with laboratory facilities and for further research initiatives, a practical laboratory scale TCSC was designed and fabricated in this paper. The TCSC parameters were designed based on the terminologies such as percentage of compensation, boost factor and resonance factor. According to the design parameters, a prototype laboratory scale TCSC with a constant reactance controller was fabricated and tested. The measured results from the laboratory scale TCSC demonstrate the ability of the TCSC to provide rapid control of series reactance of a transmission line.

  • PDF

Voltage Comparison-type TCSC Using Recursive Discrete Fouier Transform (순차 프리에 변환(DFT)를 이용한 전압비교형 TCSC TCSC(Thyristor Control led Series Compensation))

  • Ko, S.K.;Park, S.Y.;Park, J.K.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.79-81
    • /
    • 1993
  • We have proposed a new technology compensating reactance component of line and load. Because capacity of SC is static, it is not appropriate to varing reactance and causes SSR problems. TCSC is introduced for the flecxible control of reactance of SC. If SC voltage is varied when the capacitor current is constant, it can be considered that capacity of SC was varied. SO capacity of SC can be controlled by controlling the voltage of SC. Control reference voltage of SC can be obtained from the condition that sum of reactive powers in all parts is zero.

  • PDF

Static VAR Compensator Using PWM Voltage type Converter (PWM전압형 콘버어터에 의한 정지형 무효전력 보상장치)

  • 정연택;이훈구;황락훈
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.8
    • /
    • pp.836-846
    • /
    • 1990
  • This paper presents a Static Var Compensator (SVC) system compensating the reactive power for power system, which consists of a voltage type Pulse Width Modulation (PWM) converter and a reactance linking the converter to the source. The system drives the four quadrant modes. The system determines the magnitude of the input voltage, and then compares it with the magnitude of the source voltage by regulating the phase of the SVC about the source. Therefore, the system generates leading compensation currents when the input voltage is larger than the source in magnitude, and lagging compensation currents for smaller input voltage. Reactive power about voluntary load in power system is smoothly compensated by those compensation currents, and also power factor of source is improved. Furthermore, the SVC system using PWM method may improve the source current waveforms by eliminating the 5th and 7th harmonic components from the input voltages.

  • PDF

The Application of Impulse Oscillometry (IOS) in the Workers Who had been Exposed to Inorganic Dust Induced Early Airway Obstruction (Impulse Oscillometry (IOS)를 이용한 무기분진 노출자에서의 기도폐쇄 연구)

  • Lee, Joung-Oh;Lee, You-Lim;Choi, Byung-Soon;Lee, Hong-Ki
    • Tuberculosis and Respiratory Diseases
    • /
    • v.71 no.6
    • /
    • pp.431-437
    • /
    • 2011
  • Background: We tried to examine the small airway diseases which can be found early, in workers exposed to inorganic dusts. This is measured in normal breath by using the impulse oscillometry (IOS). Methods: The Pulmonary function test (forced vital capacit [FVC], forced expiratory volume in one second [$FEV_1$], forced expiratory flow between 25% and 75% of vital capacity [$FEF_{25-75}$]), IOS resistance (Rrs at 5, 10, 15, 20, 25, 35 Hz) and reactance (Xrs at 5, 10, 15, 20, 25, 35 Hz) were measured for 454 workers. The subjects were classified into 173 workers of normal (38.1%) and 281 patients with pneumoconiosis (61.9%). Results: There were significant differences between normal and patients with FVC ($3.82{\pm}0.61$ vs. $3.53{\pm}0.56L$), $FEV_1$ ($2.67{\pm}0.63$ vs. $2.35{\pm}0.48L$), and $FEF_{25-75}$ ($1.88{\pm}0.95$ vs. $1.47{\pm}0.80L/sec$) between groups (p<0.05). And as for IOS, there was no significant difference in resistance (Rrs) (p>0.05), and there were significant differences between normal and patients with reactance (Xrs) 15 Hz ($0.003{\pm}0.05$ vs. $-0.006{\pm}0.04kPa/L/s$), 20 Hz ($0.043{\pm}0.05$ vs. $0.031{\pm}0.04kPa/L/s$), and 35 Hz ($0.141{\pm}0.05$ vs. $0.131{\pm}0.05kPa/L/s$) between groups (p<0.05). Conclusion: We could find out that 15 Hz, 20 Hz, and 35 Hz values of reactance were significantly influenced by pneumoconiosis. When usefulness and reproducibility to carry out the IOS are considered, it is thought that in future work will be required to draw the reference values for normal Korean persons.

Utility Interactive Photovoltaic Generation System using PWM Current Source Inverter (PWM 전류형인버터를 이용한 계통연계형 태양광 발전시스템)

  • 박춘우;성낙규;이승환;강승욱;이훈구;한경희
    • Proceedings of the KIPE Conference
    • /
    • 1996.06a
    • /
    • pp.109-112
    • /
    • 1996
  • In this paper, we composed utility interactive photovoltaic generation system of current source inverter, and controlled that low harmonic and high power factor are hold by supposing control and compensation method which is concerned with synchronous signal distortion and modulation delay. And we put parallel resonant circuit into dc link, so, magnitude of direct reactance was reduce by restraining direct current pulsation which had accumulation of pulsating power in alternating electrolytic condenser. Also we controlled that modulation factor is operated around maximum output of solar cell.

  • PDF

Series Line Compensation through Voltage Source Inverter (전압원 인버터에 의한 선로의 직렬보상)

  • 한병문;한경희;신익상;강중구
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.299-302
    • /
    • 1997
  • This paper describes a dynamic var compensator to compensate the line reactance for power transmission and distribution system. The compensator consists of a voltage source inverter with dc capacitor, coupling transformers, and control circuit. The operation of compensator was verified by computer simulations with EMPT and experimental works with a scaled hardware model. The advantage of the proposed system is rapid and continuous regulation of the reactive power.

  • PDF

Compensation of Voltage Drop Using the SVC in Electric Railway Power Supply System (SVC를 이용한 전기철도 급전시스템에서의 전압강하 보상)

  • Bang, Seong-Won;Jung, Hyun-Soo;Jung, Chang-Ho;Kim, Jin-O
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.289-291
    • /
    • 2001
  • This paper represents the application of the Static Var Compensator (SVC) on the electric railway power supply system to compensate for the voltage drop. The high reactance of line and a heavy train load consume a significant amount of the reactive power which results the voltage drop. This paper shows that the SVC is necessary for voltage compensation in the railway power supply system and verify effectiveness of the SVC through the simulation by using PSCAD/EMTDC. In this paper, the case studies were performed with the various line length and train loads.

  • PDF

Temperature Compensation Using Principal Component Analysis for Impedance-based Structural Health Monitoring (주성분 분석을 이용한 임피던스 기반 구조물 건전성 모니터링의 온도보상기법)

  • Shim, Hyo-Jin;Min, Ji-Young;Yun, Chung-Bang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.32-35
    • /
    • 2011
  • 전기역학적 임피던스(electromechanical impedance)를 이용한 구조물 건전성 모니터링(structural health monitoring; SHM) 기술은 구조물의 주요 부재에 압전센서를 부착하여 이로부터 획득한 임피던스 신호의 변화를 관찰함으로써 구조물의 국부적 상태를 실시간으로 진단하는 것이다. 임피던스는 손상뿐만 아니라 외부 온도에도 민감하게 반응하기 때문에 구조물 진단 결과에 상당한 오차를 유발할 수 있으므로 이에 대한 보상을 수행해야 한다. 따라서 본 논문에서는 온도변화가 임피던스 기반 진단 결과에 미치는 영향을 PZT 센서를 사용하여 실험적으로 연구하였다. 리액턴스(reactance)의 주성분 분석(Principal Component Analysis; PCA)을 통해 도출된 첫번째 주성분과 저항(resistance)으로부터 계산된 손상지수 사이의 관계를 분석함으로써, 온도변화에 의해 구별되지 않았던 손상을 보다 확연하게 구별 할 수 있음을 확인하였다.

  • PDF

Algorithm of reactive power injection on Distributed Static Series Compensator (송전 전력 제어를 위한 분산 정지형 직렬 보상기의 무효전력 주입 기법)

  • Yoon, Hanjong;Lee, Taeyoung;Cho, Younghoon
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.214-215
    • /
    • 2017
  • Distributed Flexible AC Transmission System(D-FACTS) was proposed as a solution for weakness of FACTS device s. The D-FACTS device DSSC(Distributed Static Series Co mpensator) can provide controllable reactance compensation in transmission line such as SSSC(Static Synchronous Series Compensator). This paper introduce the algorithm of reactive power injection on DSSC and propose the method of current balancing by reactive power injection. The proposed algorithm has been verified with simulation and experiment results.

  • PDF