• Title/Summary/Keyword: Rayleigh problem

Search Result 151, Processing Time 0.021 seconds

Quadratic B-spline finite element method for a rotating non-uniform Rayleigh beam

  • Panchore, Vijay;Ganguli, Ranjan
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.765-773
    • /
    • 2017
  • The quadratic B-spline finite element method yields mass and stiffness matrices which are half the size of matrices obtained by the conventional finite element method. We solve the free vibration problem of a rotating Rayleigh beam using the quadratic B-spline finite element method. Rayleigh beam theory includes the rotary inertia effects in addition to the Euler-Bernoulli theory assumptions and presents a good mathematical model for rotating beams. Galerkin's approach is used to obtain the weak form which yields a system of symmetric matrices. Results obtained for the natural frequencies at different rotating speeds show an accurate match with the published results. A comparison with Euler-Bernoulli beam is done to decipher the variations in higher modes of the Rayleigh beam due to the slenderness ratio. The results are obtained for different values of non-uniform parameter ($\bar{n}$).

Vibration Analysis of Two Unequal Circular Plates Coupled with a Fluid (유체로 연성되고 크기가 다른 두 원판의 진동해석)

  • 정경훈;최순
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.258-262
    • /
    • 2004
  • An analytical method for the free vibration of two circular plates coupled with a fluid was developed by the Rayleigh-Ritz method. The two plates with unequal thickness and diameter are clamped along the cylindrical vessel wall. It is assumed that the fluid bounded by a rigid cylindrical vessel is incompressible and non-viscous. The wet mode shape of the circular plates is assumed as a combination of the dry mode shapes of the plates. The fluid motion is described by using the fluid displacement potential and determined by using the compatibility conditions along the fluid interface with the plate. Minimizing the Rayleigh quotient based on the energy conservation gives a eigenvalue problem. It is found that the theoretical results can predict well the fluid-coupled natural frequencies with excellent accuracy comparing with the finite element analysis result.

  • PDF

Performance of hybrid spead spectrum systems in rayleigh fading channel (레일레이 페이딩 채널에서 하이브리드 확산대역 시스팀의 성능)

  • 조현욱;박상규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.8
    • /
    • pp.2023-2032
    • /
    • 1996
  • In this paper, we calculate average bit error probabilities of asynchronous hybrid DS/FH-SSMA systems in AWGN chnnel and nonselective Rayleigh fading channel. We analyze and compare the performance of systems in AWGN channel and Rayleigh fading channel by using linear correlation receiver and hard limiting correlation receiver(nonlinear correlation receiver). Binary PSK scheme is considered and random spreading code sequences and random hopping patterns are used. Bit error probabilities of the systems with/without near-far problem under the same bandwidth expansion are calculated. the result shows that the performance of hard limiting correlation receiver is better than that of linear correlation receiver over nonselective Rayleigh fading channel.

  • PDF

Vibration Analysis of Two Annular Plates Coupled with a Fluid (유체로 연성된 두 환형평판의 진동해석)

  • Jeong, Kyeong-Hoon;Kim, Jong-In
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.906-910
    • /
    • 2004
  • An analytical method for the free vibration of two annular plates coupled with water was developed by the Rayleigh-Ritz method. The two plates with unequal thickness are clamped along a rigid cylindrical vessel wall. It is assumed that the fluid bounded by a rigid cylindrical vessel is incompressible and non-viscous. The wet mode shape of the annular plates Is assumed as a combination of the dry mode shapes of the plates. The fluid motion is described by using the fluid displacement potential and determined by using the compatibility conditions along the fluid interface with the plate. Minimizing the Rayleigh quotient based on the energy conservation gives an eigenvalue problem. It is found that the theoretical results can predict well the fluid-coupled natural frequencies comparing with the finite element analysis result.

  • PDF

Meshless local Petrov-Galerkin method for rotating Rayleigh beam

  • Panchore, Vijay
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.607-616
    • /
    • 2022
  • In this work, the free vibration problem of a rotating Rayleigh beam is solved using the meshless Petrov-Galerkin method which is a truly meshless method. The Rayleigh beam includes rotatory inertia in addition to Euler-Bernoulli beam theory. The radial basis functions, which satisfy the Kronecker delta property, are used for the interpolation. The essential boundary conditions can be easily applied with radial basis functions. The results are obtained using six nodes within a subdomain. The results accurately match with the published literature. Also, the results with Euler-Bernoulli are obtained to compare the change in higher natural frequencies with change in the slenderness ratio (${\sqrt{A_0R^2/I_0}}$). The mass and stiffness matrices are derived where we get two stiffness matrices for the node and boundary respectively. The non-dimensional form is discussed as well.

A PARALLEL PRECONDITIONER FOR GENERALIZED EIGENVALUE PROBLEMS BY CG-TYPE METHOD

  • MA, SANGBACK;JANG, HO-JONG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.5 no.2
    • /
    • pp.63-69
    • /
    • 2001
  • In this study, we shall be concerned with computing in parallel a few of the smallest eigenvalues and their corresponding eigenvectors of the eigenvalue problem, $Ax={\lambda}Bx$, where A is symmetric, and B is symmetric positive definite. Both A and B are large and sparse. Recently iterative algorithms based on the optimization of the Rayleigh quotient have been developed, and CG scheme for the optimization of the Rayleigh quotient has been proven a very attractive and promising technique for large sparse eigenproblems for small extreme eigenvalues. As in the case of a system of linear equations, successful application of the CG scheme to eigenproblems depends also upon the preconditioning techniques. A proper choice of the preconditioner significantly improves the convergence of the CG scheme. The idea underlying the present work is a parallel computation of the Multi-Color Block SSOR preconditioning for the CG optimization of the Rayleigh quotient together with deflation techniques. Multi-Coloring is a simple technique to obatin the parallelism of order n, where n is the dimension of the matrix. Block SSOR is a symmetric preconditioner which is expected to minimize the interprocessor communication due to the blocking. We implemented the results on the CRAY-T3E with 128 nodes. The MPI(Message Passing Interface) library was adopted for the interprocessor communications. The test problems were drawn from the discretizations of partial differential equations by finite difference methods.

  • PDF

A Note on Bayesian Prediction Analysis for the Rayleigh Model in the presence of Outliers

  • Ko, Jeong-Hwan;Kim, Yeung-Hoon
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.171-176
    • /
    • 2003
  • This paper deals with the problem of predicting order statistics in samples from a Rayleigh population when an outlier is present. Bayesian predictive distribution and prediction bounds of the p-th order statistics is obtained where an outlier of type $\theta\delta$ is present. In this connection, some identies are derived.

  • PDF

Free Vibration Analysis of Fluid Vessel with Annular and Circular Plates (환형평판과 원판으로 구성된 유체용기의 고유진동 해석)

  • Jeong, Kyeong-Hoon;Kim, Jong-In;Park, Jin-Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.8 s.101
    • /
    • pp.968-974
    • /
    • 2005
  • An analytical method for the hydroelastic vibration of a vessel composed of an upper annular plate and a lower circular plate is developed by the Rayleigh-Ritz method. The two plates are clamped along a rigid cylindrical vessel wall. It is assumed that the fluid bounded by a rigid cylindrical vessel is incompressible and non-viscous. The wet mode shape of the plates is assumed as a combination of the dry mode shapes of the plates. The fluid motion is described by using the fluid displacement potential and determined by using the compatibility conditions along the fluid interface with the plate. Minimizing the Rayleigh quotient based on the energy conservation gives an eigenvalue problem. It is found that the theoretical results can predict well the fluid-coupled natural frequencies comparing with the finite element analysis result.

Numerical Study of Unsteady Mixed Convection in a Cavity with High Viscous Fluid (캐비티 내 고 점성유체의 비정상 흔합대류에 관한 수치해석적 연구)

  • Bae, D.S.;Cai, Long Ji
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.11-17
    • /
    • 2009
  • A numerical study of unsteady mixed convection in a cavity with high viscous fluid is presented. Finite volume method was employed for the discretization and PISO algorithm was used for calculating pressure term. The parameters governing the problem are the Rayleigh number ($10^3\;{\leq}\;Ra\;{\leq}\;10^5$), the Reynolds number (0 < Re $\leq$ 1), and the aspect ratio (0.5 $\leq$ AR $\leq$ 2). The fluid used is silicon oil, a high prandtl number fluid, Pr = 909.1. The results show velocity vectors and temperature distributions. It is found that the periodic flows in a cavity are observed at very low Reynolds numbers, and the period of periodic flow decreases with increasing Reynolds and Rayleigh numbers, and increases with increasing aspect ratio. Also, the Reynolds number range of periodic flow increases with increasing Rayleigh numbers and aspect ratio.

  • PDF

Probability-Based Active Control Using Structure Energy (구조물의 에너지를 이용한 확률에 기초한 능동제어)

  • Min, Kyung-Won;Hwang, Jae-Seung;Lee, Sang-Hyun;Lan Chung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.47-55
    • /
    • 2003
  • This paper Presents active control algorithm using probability density function of structural energy. It is assumed that the structural energy under excitation has Rayleigh probability distribution. This assumption is based on the fact that Rayleigh distribution satisfies the condition that the structural energy is always positive and the occurrence probability of minimum energy is zero. The magnitude of control force is determined by the probability that the structural energy exceeds the specified target critical energy, and the sign of control force is determined by Lyapunov controller design method. Proposed control algorithm shows much reduction of peak responses under seismic excitation compared to LQR controller, and it can consider control force limit in the controller design. Also, chattering problem which sometimes occurs in Lyapunov controller can be avoided.

  • PDF