Vibration Analysis of Two Unequal Circular Plates Coupled with a Fluid

유체로 연성되고 크기가 다른 두 원판의 진동해석

  • Published : 2004.05.01

Abstract

An analytical method for the free vibration of two circular plates coupled with a fluid was developed by the Rayleigh-Ritz method. The two plates with unequal thickness and diameter are clamped along the cylindrical vessel wall. It is assumed that the fluid bounded by a rigid cylindrical vessel is incompressible and non-viscous. The wet mode shape of the circular plates is assumed as a combination of the dry mode shapes of the plates. The fluid motion is described by using the fluid displacement potential and determined by using the compatibility conditions along the fluid interface with the plate. Minimizing the Rayleigh quotient based on the energy conservation gives a eigenvalue problem. It is found that the theoretical results can predict well the fluid-coupled natural frequencies with excellent accuracy comparing with the finite element analysis result.

Keywords