• Title/Summary/Keyword: Rapid thermal annealing process

Search Result 204, Processing Time 0.022 seconds

Investigation on the Electrical Properties of Ion Implanted ZnO Thin Film (이온 주입된 ZnO 박막의 전기적 특성 연구)

  • Kang, Hong-Seong;Lim, Sung-Hoon;Chang, Hyun-Woo;Kim, Gun-Hee;Kim, Jong-Hoon;Lee, Sang-Yeol;Lee, Jung-Kun;Nastasi, Michael
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.49-50
    • /
    • 2005
  • Nitrogen and phosphorus ions were implanted into ZnO thin film fabricated by pulsed laser deposition. ion implanted ZnO thin films were annealed from $700^{\circ}C$ to $1000^{\circ}C$ using rapid thermal annealing process. The electron concentration was changed form $10^{20}$ to $10^{18}/cm^3$. Effect of nitrogen and phosphorus in ZnO thin films was certified and the structural and optical properties of nitrogen and phosphorus doped ZnO thin films depending on concentration of nitrogen and phosphorus were investigated.

  • PDF

THE TWO-STEP RAPID THERMAL ANNEALING EFFECT OF THE PREPATTERNED A-SI FILMS (프리 패턴한 비정질 실리콘 박막의 two-step RTA 효과)

  • Lee, Min-Cheol;Park, Kee-Chan;Choi, Kwon-Young;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1333-1336
    • /
    • 1998
  • Hydrogenated amorphous silicon(a-Si:H) films which were deposited by plasma enhanced chemical deposition(PECVD) have been recrystallized by the two-step rapid thermal annealing(RTA) employing the halogen lamp. The a-Si:H films evolve hydrogen explosively during the high temperature crystallzation step. In result, the recrystallized polycrystalline silicon(poly-Si) films have poor surface morphology. In order to avoid the hydrogen evolution, the films have undergone the dehydrogenation step prior to the crystallization step Before the RTA process, the active area of thin film transistors (TFT's) was patterned. The prepatterning of the a-Si:H active islands may reduce thermal damage to the glass substrate during the recrystallization. The computer generated simulation shows the heat propagation from the a-Si:H islands into the glass substrate. We have fabricated the poly-Si TFT's on the silicon wafers. The maximun ON/OFF current ratio of the device was over $10^5$.

  • PDF

Property Variation of Diamond-like Carbon Thin Film According to the Annealing Temperature (열처리에 따른 Diamond-like Carbon (DLC) 박막의 특성변화)

  • Park, Ch.S.;Koo, K.H.;Park, H.H.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.1
    • /
    • pp.49-53
    • /
    • 2011
  • Diamond-like carbon (DLC) films is a metastable form of amorphous carbon containing a significant fraction of Sp3 bond. DLC films have been characterized by a range of attractive mechanical, chemical, tribological, as well as optical and electrical properties. In this study DLC films were prepared by the RF magnetron sputter system on $SiO_2$ substrates using graphite target. The effects of the post annealing temperature on the Property variation of the DLC films were examined. The DLC films were annealed at temperatures ranging from 300 to $500^{\circ}C$ using rapid thermal process equipment in vacuum. The variation of electrical property and surface morphology as a function of annealing treatment was investigated by using a Hall Effect measurement and atomic force microscopy. Raman and X-ray photoelectron spectroscopy analyses revealed a structural change in the DLC films.

Effects of post-annealing on the characteristics of MOCVD-Cu/TiN/Si structures by the rapid thermal process (급속열처리에 의한 MOCVD-Cu/TiN/Si 구조의 후열처리 특성)

  • 김윤태;전치훈;백종태;김대룡;유형준
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.1
    • /
    • pp.28-35
    • /
    • 1997
  • Effects of rapid thermal annealing on the characteristics of Cu films deposited from the (hfac)Cu(VTMS) precursor and on the barrier properties of TiN layers were studied. By the post-annealing, the electrical characteristics of Cu/TiN and the microstructures of Cu films were significantly changed. The properties of Cu films were more sensitive to the annealing temperature than the annealing time. Sheet resistance started to increase above $400^{\circ}C$, and the interreaction between Cu and Ti and the oxidation of Cu layer were observed above $600^{\circ}C$. The grain growth of Cu with the (111) preferred orientation was found to be most pronounced at $500^{\circ}C$. It revealed that the optimum annealing conditions for MOCVD-Cu/PVD-TiN structures to enhance the electrical characteristics without degradation of TiN barriers were in the range of $400^{\circ}C$.

  • PDF

Effects of annealing temperature on structural and optical properties of CdS Films prepared by RF magnetron sputtering

  • Hwang, Dong-Hyeon;An, Jeong-Hun;Son, Yeong-Guk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.233-233
    • /
    • 2010
  • CdS thin films were deposited on glass substrates by R.F. magnetron sputtering method and some of the samples were treated by rapid thermal annealing (RTA) process. Effects of thermal annealing on structural and optical properties were investigated at different temperatures ranging from 100 to $600^{\circ}C$. The crystallographic structure of the films and the size of the crystallites in the films were studied by X-ray diffraction. The crystallite sizes were found to increase, and the X-ray diffraction patterns were seen to sharpen by annealing. Optical properties of the films were calculated using the envelope method and the photoluminescence measurements. The optical properties of the films were seen to be dependent on the film thicknesses. The energy gap of the films was found to decrease by annealing. The band edge sharpness of the optical absorption was seen to oscillate by thermal annealing. Annealing over $400^{\circ}C$ was seen to degrade the optical properties of the film. The best annealing temperature for the films was found to be $400^{\circ}C$ from the optical properties. It is observed that the CdS film annealed at $400^{\circ}C$ reveals the strongest UV emission intensity and narrowest full width at half maximum among the temperature ranges studied. The enhanced UV emission from the film annealed at $400^{\circ}C$ is attributed to the improved crystalline quality of CdS thin film due to the effective relaxation of residual compressive stress and achieving maximum grain size. The results show that heat treatments under optimal annealing condition can provide significant improvements in the properties of CdS thin films.

  • PDF

Study on Low Temperature Formation of Ferroelectric $Sr_{0.9}4$Bi_{2.1}$$Ta_2$$O_9$ Thin Films by Sol-Gel Process and Rapid Thermal Annealing (솔-젤법 및 급속열처리에 의한 $Sr_{0.9}4$Bi_{2.1}$$Ta_2$$O_9$ 박막의 저온형성에 관한 연구)

  • 장현호;송석표;김병호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.4
    • /
    • pp.312-317
    • /
    • 2000
  • Ferroelectric S $r_{0.9}$/B $i_{2.1}$/T $a_{2}$/ $O_{9}$ solutions were synthesized using sol-gel process in which strontinum ethoxide bismuth ethoxide trantalum ethoxide were used a s startring materials. SBT thin films were coated on Pt/Ti/ $SiO_2$/Si substrates by spin-coating. rapid thermal annealing (RTA) was used to promote crystallization. Thin films were annealed at $700^{\circ}C$ for 1 hr in an oxygen atmosphere. This temperature is about 10$0^{\circ}C$ lower than the usual annealing temperature for SBT thin films. Pt top-electrode was deposited by sputtering and thin films were post-annealed at $700^{\circ}C$ for 30 min. to enhance electrical properties. As the RTA temperature increased the higher 2 $P_{r}$ values were obtained. At RTA temperature being 78$0^{\circ}C$ remanent polarization of S $r_{0.9}$/B $i_{2.1}$/T $a_{2}$/ $O_{9}$ thin film was 7.73 $\mu$C/cm $_2$ and the leakage current density was 1.14$\times$10$^{-7}$ A/c $m^2$ at 3 V. As RTA temperature increased the breakdown voltage was decreased. It is considered that the low-field breadown is caused by the rough surface of SBT films and forming bismuth metal in SBT thin films.films.lms.

  • PDF

Annealing-temperature Dependent Characteristics of PLZT Thin Films on ITO Coated Glass (ITO 기판에 제작된 PLZT 박막의 소성온도에 따른 특성)

  • Choi, Hyung-Wook;Jang, Nak-Won;Park, Chang-Yub
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.2
    • /
    • pp.128-132
    • /
    • 1998
  • 2/65/35 PLZT stock solution prepared by Sol-Gel processing was spin-coated on ITO coated glass and annealed by RTA(Rapid Thermal Annealing). The crystal structure of films was reported based on the observation of crystallization process and microstructure of the film fabricated at different fabrication condition. Films were crystallized into rhombohedral structure by annealing at $750^{\circ}C$ for 5 min. As the annealing temperature increased, the size of rosette structure of the films was grown up from $2.4{\mu}m$ to $15{\mu}m$, dielectric constant was increased, coercive field was decreased 33.82 kV/cm, remnant polarization was increased to 39.84 ${\mu}C/cm^2$ and Optical transmittance was decreased.

  • PDF

Silicide Formation of Atomic Layer Deposition Co Using Ti and Ru Capping Layer

  • Yoon, Jae-Hong;Lee, Han-Bo-Ram;Gu, Gil-Ho;Park, Chan-Gyung;Kim, Hyung-Jun
    • Korean Journal of Materials Research
    • /
    • v.22 no.4
    • /
    • pp.202-206
    • /
    • 2012
  • $CoSi_2$ was formed through annealing of atomic layer deposition Co thin films. Co ALD was carried out using bis(N,N'-diisopropylacetamidinato) cobalt ($Co(iPr-AMD)_2$) as a precursor and $NH_3$ as a reactant; this reaction produced a highly conformal Co film with low resistivity ($50\;{\mu}{\Omega}cm$). To prevent oxygen contamination, $ex-situ$ sputtered Ti and $in-situ$ ALD Ru were used as capping layers, and the silicide formation prepared by rapid thermal annealing (RTA) was used for comparison. Ru ALD was carried out with (Dimethylcyclopendienyl)(Ethylcyclopentadienyl) Ruthenium ((DMPD)(EtCp)Ru) and $O_2$ as a precursor and reactant, respectively; the resulting material has good conformality of as much as 90% in structure of high aspect ratio. X-ray diffraction showed that $CoSi_2$ was in a poly-crystalline state and formed at over $800^{\circ}C$ of annealing temperature for both cases. To investigate the as-deposited and annealed sample with each capping layer, high resolution scanning transmission electron microscopy (STEM) was employed with electron energy loss spectroscopy (EELS). After annealing, in the case of the Ti capping layer, $CoSi_2$ about 40 nm thick was formed while the $SiO_x$ interlayer, which is the native oxide, became thinner due to oxygen scavenging property of Ti. Although Si diffusion toward the outside occurred in the Ru capping layer case, and the Ru layer was not as good as the sputtered Ti layer, in terms of the lack of scavenging oxygen, the Ru layer prepared by the ALD process, with high conformality, acted as a capping layer, resulting in the prevention of oxidation and the formation of $CoSi_2$.

Properties of the carbon electrode perovskite solar cells with various annealing processes (열처리 방법에 따른 카본전극 페로브스카이트 태양전지의 특성 변화)

  • Song, Ohsung;Kim, Kwangbea
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.26-32
    • /
    • 2021
  • The photovoltaic properties and microstructure changes were observed while perovskite solar cells (PSCs) with a fabricated carbon electrode were formed using the following annealing processes: hot-plate, oven, and rapid thermal annealing (RTA). Perovskite solar cells with a glass/FTO/compact TiO2/meso TiO2/meso ZrO2/carbon structure were prepared. The photovoltaic properties and microstructure changes in the PSCs were analyzed using a solar simulator, optical microscopy, and field emission scanning electron microscopy. An analysis of the photovoltaic properties revealed outstanding properties when RTA was applied to the cells. Microstructure analysis showed that perovskite was formed locally on the carbon electrode surface when hot-plate and oven annealing were applied. On the other hand, PSC with RTA showed a flat surface without extra perovskite agglomeration. Denser perovskite formed on the porous carbon electrode layer with RTA showed superior photovoltaic properties. These results suggest that the RTA process might be appropriate for the massive production of carbon electrode PSCs considering the processing time.

Fabrication of Nanostructures by Dry Etching Using Dewetted Pt Islands as Etch-masks (Dewetting된 Pt Islands를 Etch Mask로 사용한 GaN 나노구조 제작)

  • Kim, Taek-Seung;Lee, Ji-Myon
    • Korean Journal of Materials Research
    • /
    • v.16 no.3
    • /
    • pp.151-156
    • /
    • 2006
  • A method for fabrication of nano-scale GaN structure by inductively coupled plasma etching is proposed, exploiting a thermal dewetting of Pt thin film as an etch mask. The nano-scale Pt metal islands were formed by the dewetting of 2-dimensional film on $SiO_2$ dielectric materials during rapid thermal annealing process. For the case of 30 nm thick Pt films, pattern formation and dewetting was initiated at temperatures greater $600^{\circ}C$. Controlling the annealing temperature and time as well as the thickness of the Pt metal film affected the size and density of Pt islands. The activation energy for the formation of Pt metal island was calculated to be 23.2 KJ/mole. The islands show good resistance to dry etching by a $CF_4$ based plasma for dielectric etching indicating that the metal islands produced by dewetting are suitable for use as an etch mask in the fabrication of nano-scale structures.