• Title/Summary/Keyword: Range gate

Search Result 432, Processing Time 0.03 seconds

Accurate RF C-V Method to Extract Effective Channel Length and Parasitic Capacitance of Deep-Submicron LDD MOSFETs

  • Lee, Sangjun;Lee, Seonghearn
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.6
    • /
    • pp.653-657
    • /
    • 2015
  • A new paired gate-source voltage RF capacitance-voltage (C-V) method of extracting the effective channel length and parasitic capacitance using the intersection between two closely spaced linear regression lines of the gate capacitance versus gate length measured from S-parameters is proposed to remove errors from conventional C-V methods. Physically verified results are obtained at the gate-source voltage range where the slope of the gate capacitance versus gate-source voltage is maximized in the inversion region. The accuracy of this method is demonstrated by finding extracted value corresponding to the metallurgical channel length.

Dual Gate-Controlled SOI Single Electron Transistor: Fabrication and Coulomb-Blockade

  • Lee, Byung T.;Park, Jung B.
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.208-211
    • /
    • 1997
  • We have fabricated a single-electron-tunneling(SET) transistor with a dual gate geometry based on the SOI structure prepared by SIMOX wafers. The split-gate is the lower-gate is the lower-level gate and located ∼ 100${\AA}$ right above the inversion layer 2DEG active channel, which yields strong carrier confinement with fully controllable tunneling potential barrier. The transistor is operating at low temperatures and exhibits the single electron tunneling behavior through nano-size quantum dot. The Coulomb-Blockade oscillation is demonstrated at 15mK and its periodicity of 16.4mV in the upper-gate voltage corresponds to the formation of quantum dots with a capacity of 9.7aF. For non-linear transport regime, Coulomb-staircases are clearly observed up to four current steps in the range of 100mV drain-source bias. The I-V characteristics near the zero-bias displays typical Coulomb-gap due to one-electron charging effect.

  • PDF

Design of Optimal Locating Points of the Hydraulic Cylinder Actuating a Sluice Gate Using the Complex Method (컴플렉스법에 의한 수문 유압실린더의 최적 설치점 설계)

  • Lee Seong-Rae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.170-176
    • /
    • 2005
  • The hydraulic cylinder is used for actuating the sluice gate which controls the volume of water in the reservoir. The locating points of hydraulic cylinder are restricted to limited space and determined to minimize the cylinder force necessary for actuating the sluice gate. Generally, the head end point of cylinder is fixed at underground and the rod end point of cylinder is connected to the gate plate when it is fully opened. Therefore there exist three parameters to be determined to minimize the cylinder force in the operation range of sluice gate. The optimal locating points of hydraulic cylinder are obtained using the complex method that is one kind of constrained direct search m method.

Conduction Path Dependent Threshold Voltage for the Ratio of Top and Bottom Oxide Thickness of Asymmetric Double Gate MOSFET (비대칭 이중게이트 MOSFET의 상하단 산화막 두께비에 따른 전도중심에 대한 문턱전압 의존성)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2709-2714
    • /
    • 2014
  • This paper has analyzed the change of threshold voltage and conduction path for the ratio of top and bottom gate oxide thickness of asymmetric double gate MOSFET. The asymmetric double gate MOSFET has the advantage that the factor to be able to control the current in the subthreshold region increases. The analytical potential distribution is derived from Poisson's equation to analyze the threshold voltage and conduction path for the ratio of top and bottom gate oxide thickness. The Gaussian distribution function is used as charge distribution. This analytical potential distribution is used to derive off-current and subthreshold swing. By observing the results of threshold voltage and conduction path with parameters of bottom gate voltage, channel length and thickness, projected range and standard projected deviation, the threshold voltage greatly changed for the ratio of top and bottom gate oxide thickness. The threshold voltage changed for the ratio of channel length and thickness, not the absolute values of those, and it increased when conduction path moved toward top gate. The threshold voltage and conduction path changed more greatly for projected range than standard projected deviation.

Electrical Characteristics of Thin Film Transistor According to the Schottky Contacts (쇼키컨텍에 의한 박막형 트랜지스터의 전기적 특성)

  • Oh, Teresa
    • Korean Journal of Materials Research
    • /
    • v.24 no.3
    • /
    • pp.135-139
    • /
    • 2014
  • To obtain the transistor with ambipolar transfer characteristics, IGZO/SiOC thin film transistor was prepared on SiOC with various polarities as a gate insulator. The interface between a channel and insulator showed the Ohmic and Schottky contacts in the bias field of -5V ~ +5V. These contact characteristics depended on the polarities of SiOC gate insulators. The transfer characteristics of TFTs were observed the Ohmic contact on SiOC with polarity, but Schottky contact on SiOC with low polarity. The IGZO/SiOC thin film transistor with a Schottky contact in a short range bias electric field exhibited ambipolar transfer characteristics, but that with Ohmic contact in a short range electric field showed unipolar characteristics by the trapping phenomenon due to the trapped ionized defect formation.

Photocurrent Characteristics of Gate/Body-Tied MOSFET-Type Photodetector with High Sensitivity

  • Jang, Juneyoung;Choi, Pyung;Lyu, Hong-Kun;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.1-5
    • /
    • 2022
  • In this paper, the photocurrent characteristics of gate/body-tied (GBT) metal-oxide semiconductor field-effect transistor (MOSFET)-type photodetector with high sensitivity in the 408 nm - 941 nm range are presented. High sensitivity is important for photodetectors, which are used in several scientific and industrial applications. Owing to its inherent amplifying characteristics, the GBT MOSFET-type photodetector exhibits high sensitivity. The presented GBT MOSFET-type photodetector was designed and fabricated via a standard 0.18 ㎛ complementary metal-oxide-semiconductor (CMOS) process, and its characteristics were analyzed. The photodetector was analyzed with respect to its width to length (W/L) ratio, bias voltage, and incident-light wavelength. It was confirmed experimentally that the presented GBT MOSFET-type photodetector has over 100 times higher sensitivity than a PN-junction photodiode with the same area in the 408 nm - 941 nm range.

A Wide-Range Dual-Loop DLL using VCDL with Transmission Gate Inverters (TG Inverter VCDL을 사용한 광대역 Dual-Loop DLL)

  • Lee, Seok-Ho;Kim, Sam-Dong;Hwang, In-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.829-832
    • /
    • 2005
  • This paper describes a wide-range dual-loop Delay Locked Loop (DLL) using Voltage Controlled Delay Line (VCDL) based on Transmission Gate(TG) inverters. One loop is used when the minimum VCDL delay is greater than a half of $T_{REF}$, the reference clock period. The other loop is initiated when the minimum delay is less than $0.5{\times}T_{REF}$. The proposed VCDL improves the dynamic operation range of a DLL. The DLL with a VCDL of 10 TG inverters provides a lock range from 70MHz to 700MHz when designed using $0.18{\mu}m$ CMOS technology with 1.8 supply voltage. The DLL consumes 11.5mW for locking operation with a 700MHz reference clock. The proposed DLL can be used for high-speed memory devices and processors, communication systems, high-performance display interfaces, etc.

  • PDF

Simulation of do Performance and Gate Breakdown Characteristics of MgO/GaN MOSFETs (MgO/GaN MOSFETs의 dc 특성 및 Gate Breakdown 특성 Simulation)

  • Cho, Hyeon;Kim, Jin-Gon;Gila, B.P.;Lee, K.P.;Abernathy, C.R.;Pearton, S.J.;Ren, F.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.176-176
    • /
    • 2003
  • The effects of oxide thickness and gate length of MgO/GaN metal oxide semiconductor field effect transistors (MOSFETs) on I-V, threshold voltage and breakdown voltage characteristics were examined using a drift-diffusion model. The saturation drain current scales in an inverse logarithmic fashion with MgO thickness and is < 10$^{-3}$ A.${\mu}{\textrm}{m}$$^{-1}$ for 0.5 ${\mu}{\textrm}{m}$ gate length devices with oxide thickness > 600 $\AA$ or for all 1 ${\mu}{\textrm}{m}$ gate length MOSFETs with oxide thickness in the range of >200 $\AA$. Gate breakdown voltage is > 100 V for gate length >0.5 ${\mu}{\textrm}{m}$ and MgO thickness > 600 $\AA$. The threshold voltage scales linearly with oxide thickness and is < 2 V for oxide thickness < 800 $\AA$ and gate lengths < 0.6 ${\mu}{\textrm}{m}$. The GaN MOSFET shows excellent potential for elevated temperature, high speed applications.

  • PDF

Dynamic Characteristics of the Long Span Truss-Type Lift Gate by Model Test (모형실험에 의한 장지간 트러스형 리프트 게이트의 진동 특성)

  • Lee, Seong Haeng;Hahm, Hyung-Gil;Ryu, Goang Sik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.6
    • /
    • pp.117-123
    • /
    • 2015
  • An experimental study of model truss-type vertical gate consisting of a truss and a plate was presented in this paper to examine the structural dynamics of the gates. A 1:61 scale model was constructed for the 95 m prototype gate using an acrylic truss and an acrylonitrile butadiene styrene plate. The scaled model was tested in a 1.6 m wide concrete flume for two orientations to determine the effects of gate orientation on structural vibrations. Natural frequencies of the model gate was measured and calibrated with FEM predictions. Vertical vibrations were measured under various operational conditions, including a range of bottom opening heights and different upstream and downstream water levels. The gate model with reverse direction was preferred due to its low overall vibrational response and flow level combinations. The test results also provide a basic dataset for development of operations guidelines that minimize flow-induced vibrations of the gates.

A study on the GaAs MESFET′s noise characteristics with temperature dependency (온도변화에 따른 GaAs MESFET′s 노이즈 특성 연구)

  • 김시한;이명수;박지홍;안형근;한득영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.322-325
    • /
    • 2002
  • In this study, noise figures of 0.3 $\mu\textrm{m}$-GaAs MESFETs are predicted experimentally with different temperatures. Both the noise figure and the gate leakage current are obtained with wide range of temperatures(27$^{\circ}C$∼300$^{\circ}C$). From the results, gate leakage current increases with temperatures. It is expected that gate leakage current contributes directly to the increase of shot noise current. It is therefore highly recommended to apply an accurate noise analysis to the design of the devices and modules at high temperatures. Fini,Uy the relation between the gate currents resulting in the increase of noise and the noise figures of submicron GaAs MESFETs are traced with different temperatures

  • PDF