• Title/Summary/Keyword: Random measure.

Search Result 477, Processing Time 0.03 seconds

The Classification of random graph models using graph centralities

  • Cho, Tae-Soo;Han, Chi-Geun;Lee, Sang-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.7
    • /
    • pp.61-69
    • /
    • 2019
  • In this paper, a classification method of random graph models is proposed and it is based on centralities of the random graphs. Similarity between two random graphs is measured for the classification of random graph models. The similarity between two random graph models $G^{R_1}$ and $G^{R_2}$ is defined by the distance of $G^{R_1}$ and $G^{R_2}$, where $G^{R_2}$ is a set of random graph $G^{R_2}=\{G_1^{R_2},...,G_p^{R_2}\}$ that have the same number of nodes and edges as random graph $G^{R_1}$. The distance($G^{R_1},G^{R_2}$) is obtained by comparing centralities of $G^{R_1}$ and $G^{R_2}$. Through the computational experiments, we show that it is possible to compare random graph models regardless of the number of vertices or edges of the random graphs. Also, it is possible to identify and classify the properties of the random graph models by measuring and comparing similarities between random graph models.

Object Tracking in HEVC Bitstreams (HEVC 스트림 상에서의 객체 추적 방법)

  • Park, Dongmin;Lee, Dongkyu;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.20 no.3
    • /
    • pp.449-463
    • /
    • 2015
  • Video object tracking is important for variety of applications, such as security, video indexing and retrieval, video surveillance, communication, and compression. This paper proposes an object tracking method in HEVC bitstreams. Without pixel reconstruction, motion vector (MV) and size of prediction unit in the bitstream are employed in an Spatio-Temporal Markov Random Fields (ST-MRF) model which represents the spatial and temporal aspects of the object's motion. Coefficient-based object shape adjustment is proposed to solve the over-segmentation and the error propagation problems caused in other methods. In the experimental results, the proposed method provides on average precision of 86.4%, recall of 79.8% and F-measure of 81.1%. The proposed method achieves an F-measure improvement of up to 9% for over-segmented results in the other method even though it provides only average F-measure improvement of 0.2% with respect to the other method. The total processing time is 5.4ms per frame, allowing the algorithm to be applied in real-time applications.

Deriving a New Divergence Measure from Extended Cross-Entropy Error Function

  • Oh, Sang-Hoon;Wakuya, Hiroshi;Park, Sun-Gyu;Noh, Hwang-Woo;Yoo, Jae-Soo;Min, Byung-Won;Oh, Yong-Sun
    • International Journal of Contents
    • /
    • v.11 no.2
    • /
    • pp.57-62
    • /
    • 2015
  • Relative entropy is a divergence measure between two probability density functions of a random variable. Assuming that the random variable has only two alphabets, the relative entropy becomes a cross-entropy error function that can accelerate training convergence of multi-layer perceptron neural networks. Also, the n-th order extension of cross-entropy (nCE) error function exhibits an improved performance in viewpoints of learning convergence and generalization capability. In this paper, we derive a new divergence measure between two probability density functions from the nCE error function. And the new divergence measure is compared with the relative entropy through the use of three-dimensional plots.

CHARACTERIZATIONS OF GAMMA DISTRIBUTION VIA SUB-INDEPENDENT RANDOM VARIABLES

  • Hamedani, G.G.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.187-194
    • /
    • 2015
  • The concept of sub-independence is based on the convolution of the distributions of the random variables. It is much weaker than that of independence, but is shown to be sufficient to yield the conclusions of important theorems and results in probability and statistics. It also provides a measure of dissociation between two random variables which is much stronger than uncorrelatedness. Inspired by the excellent work of Jin and Lee (2014), we present certain characterizations of gamma distribution based on the concept of sub-independence.

The Ordering of Conditionally Multivariate Random Vectors

  • Baek, Jong Il;Park, Chun Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.1
    • /
    • pp.237-247
    • /
    • 2001
  • In this paper, we will introduce multivariate versions of bivariate conditionally positive dependence and the partial ordering is developed among conditionally positive lower orthant dependent(CPLOD) random vectors. This permits us to measure the degree of CPLOD-ness and to compare pairs of CPLOD random vectors. Some proper ties and closure under certain statistical operations are derived.

  • PDF

The Two Dimensional Analysis of RF Passive Device using Stochastic Finite Element Method (확률유한요소법을 이용한 초고주파 수동소자의 2차원 해석)

  • Kim, Jun-Yeon;Jeong, Cheol-Yong;Lee, Seon-Yeong;Cheon, Chang-Ryeol
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.4
    • /
    • pp.249-257
    • /
    • 2000
  • In this paper, we propose the use of stochastic finite element method, that is popularly employed in mechanical structure analysis, for more practical designing purpose of RF device. The proposed method is formulated based on the vector finite element method cooperated by pertubation analysis. The method utilizes sensitivity analysis algorithm with covariance matrix of the random variables that represent for uncertain physical quantities such as length or various electrical constants to compute the probabilities of the measure of performance of the structure. For this computation one need to know the variance and covariance of the random variables that might be determined by practical experiences. The presenting algorithm has been verified by analyzing several device with different be determined by practical experiences. The presenting algorithm has been verified by analysis several device with different measure of performanes. For the convenience of formulation, two dimensional analysis has been performed to apply it into waveguide with dielectric slab. In the problem the dielectric constant of the dielectric slab is considered as random variable. Another example is matched waveguide and cavity problem. In the problem, the dimension of them are assumed to be as random variables and the expectations and variances of quality factor have been computed.

  • PDF

RENEWAL AND RENEWAL REWARD THEORIES FOR T-INDEPENDENT FUZZY RANDOM VARIABLES

  • KIM, JAE DUCK;HONG, DUG HUN
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.5_6
    • /
    • pp.607-625
    • /
    • 2015
  • Recently, Wang et al. [Computers and Mathematics with Ap-plications 57 (2009) 1232-1248.] and Wang and Watada [Information Sci-ences 179 (2009) 4057-4069.] studied the renewal process and renewal reward process with fuzzy random inter-arrival times and rewards under the T-independence associated with any continuous Archimedean t-norm. But, their main results do not cover the classical theory of the random elementary renewal theorem and random renewal reward theorem when fuzzy random variables degenerate to random variables, and some given assumptions relate to the membership function of the fuzzy variable and the Archimedean t-norm of the results are restrictive. This paper improves the results of Wang and Watada and Wang et al. from a mathematical per-spective. We release some assumptions of the results of Wang and Watada and Wang et al. and completely generalize the classical stochastic renewal theorem and renewal rewards theorem.

Weak Association of Random Variables, with Applications

  • Kim, Tae-Sung;Choi, Jeong-Yeol
    • Honam Mathematical Journal
    • /
    • v.9 no.1
    • /
    • pp.113-119
    • /
    • 1987
  • Random variables $X_1$, $X_1$, ..., $X_m$ are said to be weakly associated if whenever $\pi$ is a permutation of {1, 2,..., m}, $1{\leq}k<m$, and f: $R^{k}{\rightarrow}R$, g: $R^{m-k}{\rightarrow}R$ are coordinatewise nondecreasing functions then Cov $[f(X_{x(1)},...,\;X_{\pi(k)},\;g(X_{x(k+1)},...,\;X_{x(m)})]{\geq}0$, whenever the covariance is defined. An infinite collection of random variables is weakly associated if every finite subcollection is weakly associated. The basic properties of weak association and central limit theorem for weakly associated random variables are derived. We also extend this idea to point random fields and prove that a Cox process with a stationary weakly associated intensity rardom measure is weakly associated. Another inequalities and the fact that positive correlated normal random variables are weakly associated are also proved.

  • PDF

ONLINE TEST BASED ON MUTUAL INFORMATION FOR TRUE RANDOM NUMBER GENERATORS

  • Kim, Young-Sik;Yeom, Yongjin;Choi, Hee Bong
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.879-897
    • /
    • 2013
  • Shannon entropy is one of the widely used randomness measures especially for cryptographic applications. However, the conventional entropy tests are less sensitive to the inter-bit dependency in random samples. In this paper, we propose new online randomness test schemes for true random number generators (TRNGs) based on the mutual information between consecutive ${\kappa}$-bit output blocks for testing of inter-bit dependency in random samples. By estimating the block entropies of distinct lengths at the same time, it is possible to measure the mutual information, which is closely related to the amount of the statistical dependency between two consecutive data blocks. In addition, we propose a new estimation method for entropies, which accumulates intermediate values of the number of frequencies. The proposed method can estimate entropy with less samples than Maurer-Coron type entropy test can. By numerical simulations, it is shown that the new proposed scheme can be used as a reliable online entropy estimator for TRNGs used by cryptographic modules.

Bayesian Model Selection in the Unbalanced Random Effect Model

  • Kim, Dal-Ho;Kang, Sang-Gil;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.4
    • /
    • pp.743-752
    • /
    • 2004
  • In this paper, we develop the Bayesian model selection procedure using the reference prior for comparing two nested model such as the independent and intraclass models using the distance or divergence between the two as the basis of comparison. A suitable criterion for this is the power divergence measure as introduced by Cressie and Read(1984). Such a measure includes the Kullback -Liebler divergence measures and the Hellinger divergence measure as special cases. For this problem, the power divergence measure turns out to be a function solely of $\rho$, the intraclass correlation coefficient. Also, this function is convex, and the minimum is attained at $\rho=0$. We use reference prior for $\rho$. Due to the duality between hypothesis tests and set estimation, the hypothesis testing problem can also be solved by solving a corresponding set estimation problem. The present paper develops Bayesian method based on the Kullback-Liebler and Hellinger divergence measures, rejecting $H_0:\rho=0$ when the specified divergence measure exceeds some number d. This number d is so chosen that the resulting credible interval for the divergence measure has specified coverage probability $1-{\alpha}$. The length of such an interval is compared with the equal two-tailed credible interval and the HPD credible interval for $\rho$ with the same coverage probability which can also be inverted into acceptance regions of $H_0:\rho=0$. Example is considered where the HPD interval based on the one-at- a-time reference prior turns out to be the shortest credible interval having the same coverage probability.

  • PDF