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CHARACTERIZATIONS OF GAMMA DISTRIBUTION

VIA SUB-INDEPENDENT RANDOM VARIABLES

G. G. Hamedani*

Abstract. The concept of sub-independence is based on the con-
volution of the distributions of the random variables. It is much
weaker than that of independence, but is shown to be sufficient to
yield the conclusions of important theorems and results in prob-
ability and statistics. It also provides a measure of dissociation
between two random variables which is much stronger than uncor-
relatedness. Inspired by the excellent work of Jin and Lee (2014),
we present certain characterizations of gamma distribution based
on the concept of sub-independence.

1. Introduction

The concept of sub-independence is stated as follows: The rv ′s (ran-
dom variables) X and Y with cdf ′s (cumulative distribution function)
FX and FY are s.i. (sub-independent) if the cdf of X + Y is given by

(1.1) FX + Y (z) = (FX ∗ FY ) (z) =

∫
R
FX (z − y) dFY (y) , z ∈ R,

or equivalently if and only if

(1.2) ϕX + Y (t) = ϕX ,Y (t, t) = ϕX (t)ϕY (t) , for all t ∈ R,

where ϕX , ϕY , ϕX+Y and ϕX,Y are cf ′s (characteristic functions)
of X , Y , X + Y and (X,Y ), respectively.
The drawback of the concept of sub-independence in comparison with
that of independence had been that the former does not have an equiva-
lent definition based on the events, which some believe, to be the natural
definition of independence. We have found such a definition now (see
Hamedani (2013)) which is stated below for the sake of completeness.
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We shall give two separate definitions, one for the discrete case (Defini-
tion 1.1) and the other for the continuous case (Definition 1.2).

Let (X,Y ) : Ω → R2 be a discrete random vector with range
< (X,Y ) = {(xi, yj) : i , j = 1, 2, ...} (finitely or infinitely countable).
Consider the events

Ai = {ω ∈ Ω : X (ω) = xi} , Bj = {ω ∈ Ω : Y (ω) = yj}
and

Az = {ω ∈ Ω : X (ω) + Y (ω) = z} , z ∈ < (X + Y ) .

Definition 1.1. The discrete rv ′s X and Y are s.i. if for every
z ∈ < (X + Y )

(1.3) P (Az) =
∑
i , j ,

∑
xi + yj = z

P (Ai)P (Bj) .

To see that (1.3) is equivalent to (1.2), suppose X and Y are s.i. via
(1.2), then∑

i

∑
j

eit(xi+yj) f (xi, yj) =
∑
i

∑
j

eit(xi+yj) fX (xi) fY (yj) ,

where f , fX and fY are probability functions of (X,Y ), X and Y re-
spectively. Let z ∈ < (X + Y ), then

eitz
∑
i , j ,

∑
xi + yj = z

f (xi, yj) = eitz
∑
i , j ,

∑
xi + yj = z

fX (xi) fY (yj) ,

which implies (1.3) .
For the continuous case, we observe that the half-plane H = {(x, y) :

x+ y < 0} can be written as a countable disjoint union of rectangles:

H = ∪∞i=1Ei × Fi,
where Ei and Fi are intervals. Now, let (X,Y ) : Ω→ R2 be a contin-
uous random vector and for c ∈ R , let

Ac = {ω ∈ Ω : X (ω) + Y (ω) < c}
and

A
(c)
i =

{
ω ∈ Ω : X (ω)− c

2
∈ Ei

}
, B

(c)
i =

{
ω ∈ Ω : Y (ω)− c

2
∈ Fi

}
.

Definition 1.2. The continuous rv ′s X and Y are s.i. if for
every c ∈ R

(1.4) P (Ac) =

∞∑
i=1

P
(
A

(c)
i

)
P
(
B

(c)
i

)
.
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To see that (1.4) is equivalent to (1.1), observe that (LHS of (1.4))

(1.5) P (Ac) = P (X + Y < c) = P ((X,Y ) ∈ Hc) ,

where Hc = {(x, y) : x+ y < c} . Now, if X and Y are s.i. then

P (Ac) = (PX × PY ) (Hc)

where PX , PY are probability measures on R defined by

PX (B) = P (X ∈ B) and PY (B) = P (Y ∈ B) ,

and PX × PY is the product measure.
We also observe that (RHS of (1.4))

∞∑
i=1

P
(
A

(c)
i

)
P
(
B

(c)
i

)
=
∞∑
i=1

P
(
X − c

2
∈ Ei

)
P
(
Y − c

2
∈ Fi

)
=
∞∑
i=1

P
(
X ∈ Ei +

c

2

)
P
(
Y ∈ Fi +

c

2

)
=
∞∑
i=1

PX × PY
(
Ei +

c

2

)
×
(
Fi +

c

2

)
.

(1.6)

Now, (1.5) and (1.6) will be equal if Hc = ∪∞i=1

{(
Ei + c

2

)
×
(
Fi + c

2

)}
, which is true since the points in Hc are obtained by shifting each point
in H over to the right by c

2 units and then up by c
2 units.

Remark 1.3. (i) Note that H can be written as a union of squares
and triangles. The triangles are congruent to 0 ≤ y < x , 0 ≤ x < 1
which in turn can be written as a disjoint union of squares. For example,
take [0, 1/2)× [0, 1/2) then [1/2, 3/4)× [0, 1/4) and so on. (ii) The
discrete rv ′s X , Y and Z are s.i. if (1.3) holds for any pair and

(1.7) P (As) =
∑

i , j , k ,

∑
xi + yj + zk= s

∑
P (Ai)P (Bj)P (Ck) .

For p variate case we need 2p−p−1 equations of the above form. (iii)
The representation (1.2) can be extended to the multivariate case as
well. (iv) For a detailed treatment of the concept of sub-independence,
we refer the interested reader to Hamedani (2013) .

2. Characterizations

Characterizations of distributions are important to many researchers
in the applied fields. An investigator will be vitally interested to know
if their model fits the requirements of a particular distribution. To this
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end, one will depend on the characterizations of this distribution which
provide conditions under which the underlying distribution is indeed
that particular distribution. Various characterizations of distributions
have been established in many different directions. In this work, several
characterizations of gamma distribution are presented. Inspired by the
excellent work of Jin and Lee (2014), we would like to establish the
following characterizations of gamma distribution based on the concept
of sub-independence.

Proposition 2.1. Let X and Y be positive s.i.i.d. (sub-independent
and identically distributed) rv ′s with an absolutely continuous cdf F
and E

[
X2
]
<∞. The rv X has a gamma distribution if and only if

there exists a γ ∈ (0, 1/4) such that for t ∈ R,

(2.1)
(ϕ′ (t))2

ϕ′′1 (t)
= γ ,

where ϕ (t) and ϕ1 (t) are cf ′s of X and X + Y respectively.

Proof. If X has a gamma distribution, then clearly (2.1) holds.
Now, assume (2.1) holds. Since X and Y are s.i. , from (1.2) we
have

(2.2) ϕ1 (t) = (ϕ (t))2 , t ∈ R.

Differentiating both sides of (2.2) twice, we arrive at

(2.3) ϕ′′1 (t) = 2
{
ϕ (t)ϕ′′ (t) +

(
ϕ′ (t)

)2}
.

Now, from (2.1) and (2.3) we obtain

ϕ (t)ϕ′′ (t) =

(
1− 2γ

2γ

)((
ϕ′ (t)

)2)
,

or

(2.4)
ϕ′′ (t)

ϕ′ (t)
=

(
1− 2γ

2γ

)
ϕ′ (t)

ϕ (t)
,

or

(2.5) ϕ′ (t) = iE (X) (ϕ (t))
1−2γ
2γ ,

in which the initial conditions ϕ (0) = 1 and ϕ′ (0) = iE (X) are used.
Solving (2.5) for ϕ (t) , we have, in view of 0 < γ < 1/4

ϕ (t) =

(
1− i

(
1− 4γ

2γ

)
E (X) t

)−( 2γ
1−4γ

)
, t ∈ R ,
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which is the cf of a gamma distribution with parameters
(

2γ
1−4γ

)
and(

1−4γ
2γ

)
E (X) .

Under the assumption of independence of the rv ′s X and Y , we
have the following proposition.

Proposition 2.2. Let X and Y be positive i.i.d. rv ′s with an
absolutely continuous cdf F and E

[
X2
]
< ∞. The rv X has a

gamma distribution if and only if there exists a γ ∈ (0, 1/4) such that
for t ∈ R,

(2.6)
(E [X exp {itX}])2

E
[
(X + Y )2 exp {it (X + Y )}

] = γ.

Proof. If X has a gamma distribution, then clearly (2.6) holds.
Now, assume (2.6) holds and observe that∫ ∞

0

∫ ∞
0

(x− y)2 exp {it (X + Y )} dF (x) dF (y)

=

∫ ∞
0

∫ ∞
0

(x+ y)2 exp {it (X + Y )} dF (x) dF (y)

− 4

(∫ ∞
0

x exp {itX} dF (x)

)2

= (1− 4γ)

∫ ∞
0

∫ ∞
0

(x+ y)2 exp {it (X + Y )} dF (x) dF (y) .

(2.7)

Now, expressing (2.7) in terms of cf ′s , we have

−2ϕ (t)ϕ′′ (t) + 2
(
ϕ′ (t)

)2
= −2 (1− 4γ)

{
ϕ (t)ϕ′′ (t) +

(
ϕ′ (t)

)2}
,

from which we arrive at the basic differential equation (2.4).

Proposition 2.3. Let X and Y be positive s.i.i.d. rv ′s with
an absolutely continuous cdf F and E

[
X2
]
< ∞ and let (X + Y )

and
(
X−Y
X+Y

)2
be s.i.i.d.. The rv X has a gamma distribution if and

only if there exists a γ ∈ (0, 1/4) such that for t ∈ R,

(2.8)
(ϕ′1 (t))2

ϕ′′2 (t)
= γ ,

where ϕ1 (t) and ϕ2 (t) are cf ′s of (X + Y ) and (X + Y )+
(
X−Y
X+Y

)2
,

respectively.
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Proof. Observe that in view of sub-independence of (X + Y ) and(
X−Y
X+Y

)2
,we have

(2.9) ϕ2 (t) = (ϕ1 (t))2 .

It is easy to see from (2.9) that if X has a gamma distribution, (2.8)
holds. Now, assume that (2.8) holds and note that differentiating
(2.9) twice and using (2.8), we have

(1− 2γ)
(
ϕ′1 (t)

)2
= 2γϕ1 (t)ϕ′′1 (t) ,

or
ϕ′′1 (t)

ϕ′1 (t)
=

(
1− 2γ

2γ

)
ϕ′1 (t)

ϕ1 (t)

from which we arrive at

ϕ1 (t) =

(
1− i

(
1− 4γ

2γ

)
E (X + Y ) t

)−( 2γ
1−4γ

)
, t ∈ R,

i.e., (X + Y ) has a gamma distribution with parameters
(

2γ
1−4γ

)
and(

1−4γ
2γ

)
E (X + Y ) . Since X and Y are s.i.i.d. , their common cf

is

ϕ (t) =

(
1− i

(
1− 4γ

2γ

)
E (X + Y ) t

)−( γ
1−4γ

)
, t ∈ R,

i.e., X has a gamma distribution with parameters
(

γ
1−4γ

)
and

(
1−4γ
2γ

)
E (X + Y ) .

Under the assumption of independence of the rv ′s X and Y we
have the following proposition.

Proposition 2.4. Let X and Y be positive i.i.d. rv ′s with an
absolutely continuous cdf F and E

[
X2
]
<∞ and let (X + Y ) and(

X−Y
X+Y

)2
be s.i.i.d. The rv X has a gamma distribution if and only

if there exists a γ ∈ (0, 1) such that for t ∈ R,
(2.10)

E

[{
(X + Y )−

(
X−Y
X+Y

)2}2

exp

{
it

[
(X + Y ) +

(
X−Y
X+Y

)2]}]

E

[{
(X + Y ) +

(
X−Y
X+Y

)2}2

exp

{
it

[
(X + Y ) +

(
X−Y
X+Y

)2]}] = γ.
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Proof. If X has a gamma distribution, then clearly (2.10) holds.
Now, if (2.10) holds, then we have∫ ∞

0

∫ ∞
0

{
(X + Y )−

(
X − Y
X + Y

)2
}2

× exp

{
it

[
(X + Y ) +

(
X − Y
X + Y

)2
]}

dF (x) dF (y)

=

∫ ∞
0

∫ ∞
0

{
(X + Y ) +

(
X − Y
X + Y

)2
}2

× exp

{
it

[
(X + Y ) +

(
X − Y
X + Y

)2
]}

dF (x) dF (y)

− 4

(∫ ∞
0

∫ ∞
0

(X + Y ) exp {it (X + Y )} dF (x) dF (y)

)2

= γ

∫ ∞
0

∫ ∞
0

{
(X + Y ) +

(
X − Y
X + Y

)2
}2

× exp

{
it

[
(X + Y ) +

(
X − Y
X + Y

)2
]}

dF (x) dF (y) ,

or

(1− γ)

∫ ∞
0

∫ ∞
0

{
(X + Y ) +

(
X − Y
X + Y

)2
}2

× exp

{
it

[
(X + Y ) +

(
X − Y
X + Y

)2
]}

dF (x) dF (y)

(2.11)

= 4

(∫ ∞
0

∫ ∞
0

(X + Y ) exp {it (X + Y )} dF (x) dF (y)

)2

.

Now, expressing (2.11) in terms of cf ′s , we have

(1− γ)ϕ1 (t)ϕ′′1 (t) + (1− γ)
(
ϕ′1 (t)

)2
= 2

(
ϕ′1 (t)

)2
,

or
ϕ′′1 (t)

ϕ′1 (t)
=

(
1 + γ

1− γ

)
ϕ′1 (t)

ϕ1 (t)
,
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from which, we obtain

ϕ1 (t) =

(
1− i

(
2γ

1− γ

)
E (X + Y ) t

)−( 1−γ
2γ

)
, t ∈ R,

i.e., (X + Y ) has a gamma distribution with parameters
(
1−γ
2γ

)
and(

2γ
1−γ

)
E (X + Y ) . Since X and Y are s.i.i.d. , their common cf is

ϕ (t) =

(
1− i

(
2γ

1− γ

)
E (X + Y ) t

)−( 1−γ
4γ

)
, t ∈ R,

i.e., X has a gamma distribution with parameters
(
1−γ
4γ

)
and

(
2γ
1−γ

)
E (X + Y ) .

Remark 2.5. Similar Propositions can be stated for Sn =
∑n

i=1Xi

and
∑m
i=1X

2
i

S 2
n

, 1 ≤ m < n , where Xi
′s are (s.i.i.d. or i.i.d.) and Sn

and
∑m
i=1X

2
i

S 2
n

, m = 1, 2, ..., n are s.i.i.d.
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