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ONLINE TEST BASED ON MUTUAL INFORMATION FOR
TRUE RANDOM NUMBER GENERATORS

Youna-Sik KiM, YONGJIN YEOM, AND HEE BoNG CHOI

ABSTRACT. Shannon entropy is one of the widely used randomness mea-
sures especially for cryptographic applications. However, the conventional
entropy tests are less sensitive to the inter-bit dependency in random sam-
ples. In this paper, we propose new online randomness test schemes for
true random number generators (TRNGs) based on the mutual infor-
mation between consecutive k-bit output blocks for testing of inter-bit
dependency in random samples. By estimating the block entropies of
distinct lengths at the same time, it is possible to measure the mutual
information, which is closely related to the amount of the statistical de-
pendency between two consecutive data blocks. In addition, we propose
a new estimation method for entropies, which accumulates intermediate
values of the number of frequencies. The proposed method can estimate
entropy with less samples than Maurer-Coron type entropy test can. By
numerical simulations, it is shown that the new proposed scheme can be
used as a reliable online entropy estimator for TRNGs used by crypto-
graphic modules.

1. Introduction

In cryptographic applications, random number generators are used to gen-
erate session keys, nonces, and prime numbers for digital signature and public
key cryptography such as RSA and elliptic curve cryptography (ECC). If gener-
ated random numbers can be predictable by using the previous and/or the next
values or they are not statistically independent from each other, the attacker
can significantly reduce the complexity of the brute force attack. Consequently,
the entire security of the crypto system can be vulnerable due to the weakness
of the used random numbers.

In general, random number generators can be categorized into pseudo ran-
dom number generators (PRNGs) and true random number generators (TRNGs).
For the case of PRNGs, the initial values should be regularly obtained from
the output of a TRNG in order to generate unpredictable random numbers.
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That is, the unpredictability of a PRNG is solely dependent on the entropy
of the random seed generated by a TRNG. Therefore, commercial smart cards
include a TRNG for their security and the random seed generated from the
TRNG should be used for initializing PRNG [9].

TRNGs are random number generators based on physical noise sources [1,
10] so as to produce unpredictable random numbers, while they can be easily
influenced by the environmental causes. For example, it is possible to attack
TRNGs based on the thermal noise by controlling the background temperature
[1]. Moreover, due to the aging effect, the statistical quality of the TRNG will
be deteriorated. Therefore, the security standard for the TRNG such as the
German standard AIS.31 requires that the TRNG should equip not only a post-
processing method which can fix some statistical bias in the TRNG output, but
also an online test method to check the statistical quality of the TRNG output
on the fly [5].

Shannon entropy is used as a measure of randomness. However, widely
used Shannon entropy estimation methods are less sensitive to the variation of
dependency between consecutive random data. If there is a statistical depen-
dency between random data, the adversary exploits this property to predict
more accurately what comes next. Therefore, we need a method to measure
the statistical dependency as well as the uniformness.

In this paper, we propose new online test schemes for TRNG which evaluate
the mutual information between consecutive k-bit random output blocks. That
is, the mutual information will be used as a measure of dependency between
consecutive bits. For a stationary random source, it will be shown that the mu-
tual information can be estimated by using block entropies with distinct sizes.
In addition, it will be shown that by estimating the block entropies with dis-
tinct sizes simultaneously, we can measure efficiently the mutual information of
random data which are generated from a stationary random source. Moreover,
the proposed schemes can be easily implemented by using a small amount of
additional memory.

2. Preliminaries
2.1. Statistical tests for randomness

It is not an easy task to decide whether a given sequence is random or not.
Especially, it is very difficult to verify the randomness of a TRNG output based
on physical behaviors of the device. Therefore, for practical applications, the
decision might be based on a series of the statistical tests for the TRNG output
samples with a finite length.

The statistical quality of random sequences can be tested based on two
categories: the uniformness and the statistical independence. While the uni-
formness generally can be measured using relatively simple methods such as
counting the numbers of occurrences of each symbol, evaluating the statistical
independence is a relatively difficult task to implement and usually checked by
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several indirect tests on random sequences [5]. Moreover, it is difficult to im-
plement those statistical tests at the same time for an online test which runs for
cryptographic modules in embedded devices because of the limited resources
in systems.

The amount of the tolerance level for the statistical weakness is dependent
on applications. This tolerance level can be defined as the lower or the upper
bounds of the probability of occurrence of a noise alarm in the course of one
year typical use of the TRNG. For example, in the German standard AIS.31,
the lower bound of the above probability is specified as 107 [5]. According to
a given tolerance level, the threshold of the test as well as the probability of
detection can be determined.

One of the widely used online test schemes is a test based on the y? test with
degree of freedom of 15 for 128 4-bit blocks [7]. In this test, the frequencies of
16 patterns representing a 4-bit block are counted and the counted values are
subtracted by the mean value, squared, and averaged by all values from the
16 patterns. This method is simple but cannot detect all kinds of statistical
defects.

2.2. Entropy as a randomness measure

C. E. Shannon introduced the concept of entropy in order to measure the
quantity of information represented by a discrete random variable X as follows
[4]

H(X)=- Z Pr(z)log, Pr(z).

The entropy H(X) is usually interpreted as the uncertainty of the random
variable X. This is the most widely used definition of the entropy in various
areas including communication and security. Especially in security applica-
tions, Shannon entropy is used as a randomness measure for a random source
[6, 2, 3].

It is assumed that the random source is stationary. That is, we assume that
statistical characteristics of the random source are independent of observation
interval. The random source generates continuous random data. We denote
by random data the output of TRNG which can be tested. By splitting the
serial random data into disjoint but fixed length bit blocks, we can estimate the
block Shannon entropies for the fixed sample space whose elements are 2% k-bit
data blocks. For some proposals [6, 3], the block entropy is used instead of the
normal Shannon entropies. In this paper, we will confine our interest to block
Shannon entropy, shortly, block entropy. Note that for the block size k, the
maximum entropy value is k& when every block is equiprobable. For example,
when the block size k equals 8 as in Figs. 5 and 6 in Section 4, the maximum
entropy value is 8.
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If a random variable Y is given, then the entropy of the other random
variable X is represented as a conditional entropy defined as [4]

H(X|Y) == Pr(z,y)log, Pr(z|y)

z,y

(1) = H(X,Y) - H(Y).

The conditional entropy X given Y is interpreted as the remaining uncertainty
of the random variable X when the random variable Y is disclosed. If two ran-
dom variables are correlated, then disclosure of one random variable reduces
the uncertainty of the other random variable. The amount of the shared un-
certainty of two random variables is measured using the mutual information
defined as
Pr(z, y)

I(X;Y) = Z Pr(z,y)log, Pr(n) Pr(y)”

zy
2.3. Weakness of the conventional entropy estimation methods

The main problem of the widely used Shannon entropy estimation meth-
ods as a randomness measure is that it is less sensitive to the variation of the
statistical dependency between consecutive bits. For example, if a sequence
with heavy bias is given, the estimated Shannon entropy tends to be low as
expected. However, if a sequence with significant statistical dependencies be-
tween neighbor bits is given, the estimated Shannon entropy of the sequence is
relatively high.
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F1GURE 1. Dependency model.

In order to test the strength of the randomness testing method with re-
spect to the statistical dependency, the dependency model depicted in Fig. 1
is considered. Fig. 1 shows that the nth bit is influenced by the previous
four bits, b,_4, bp_3, by_o, and b,_1. That is, if the exclusive OR sum of
the 4 previous bits are 0, i.e., by_1 ® bp_o @ by_3 P b,,_4 = 0, then the
probability of b, = 0 is 1 — ¢ and the probability of b, = 1 is €, where
0 < € < 0.5. Otherwise, if b,_1 D by_o D by_3 D b,_4 = 1, then the prob-
ability of b, = 0 is € and the opposite probability is 1 — e. The random test
vectors are generated according to the dependency model in Fig. 1. It is easy
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to generalize the dependency model in Fig. 1 for k-bit dependency. Espe-
cially, for 1-bit dependency, the dependency model corresponds to the case of
Pr(b, = 1|b,—1 = 1) = Pr(b, = 0|b,—1 = 0) = 1 —¢, which is a straightforward
way to present the statistical dependency between two consecutive bits.
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FIGURE 2. Shannon entropy as a measure of statistical inde-
pendence of the random numbers.
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FicURE 3. Coron’s entropy test as a measure of statistical
independence of the random numbers.
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Then the weakness of the entropy estimation methods is illustrated in Figs. 2
and 3, which show the entropy estimation results by using the frequency count-
ing method presented in Subsection 3.3.1 and Coron’s entropy test presented in
Subsection 3.3.2, respectively. In Figs. 2 and 3, the horizontal axis corresponds
to the transition probability €, which varies between 0 and 0.5. For the case of
the frequency counting method in Fig. 2, the entropies of the data with k-bit
dependency (k = 1,2,3,4) are higher than that of random data. For the case
of Coron’s entropy test in Fig. 3, the estimated entropy is still higher than the
expected value given the bias even though it is more sensitive to the variation
of the transition probability than the frequency counting method. Therefore,
we can think that there is a difficulty to distinguish the difference between
relatively high entropy values and higher dependency between subsequent bits
when the widely used Shannon entropy estimation methods are applied as a
randomness measure. In other words, although the given sequence violates not
only the uniformity but also the statistical independence, the estimated Shan-
non entropy of the random sequence may indicate that the given sequence is
sufficiently random.

We can understand the result in Fig. 2 especially for one bit dependency
given as Pr(b; = 0|b;—1 = 0) = Pr(b; = 1|bj—1 = 1) =1 — ¢, Pr(b; = 1|b;—1 =
0) = Pr(b; = 0|bj—1 = 1) = e. Therefore, for very small ¢, 0 or 1 will be con-
tinuously generated for a long time with high probability. However, with 1/
bits for € > 0, we can expect the bit transition 0 to 1 or 1 to 0. Therefore, two
kinds of patterns (all ones and all zeros) alternatively appear in long enough
output. If we split the output into k-bit blocks, 00...0 and 11...1 will be the
dominant patterns among 2* block patterns within the whole sequence. There-
fore, Shannon entropy is expected to be over 1 in this case. We can similarly
expand this explanation to the multi-bit dependency.

Therefore, we need a new method to check the statistical dependency in
random samples. Especially, since TRNGs are based on the physical random
source, the statistical dependency is an important factor for the quality of the
generated random data. For example, consider the ring-oscillator (RO) based
TRNGs which use several ROs to increase the throughput [8]. If a set of ROs
are closely located in a chip due to the restricted hardware resources, then they
can be electro-magnetically coupled and as a result, the generated random data
can be statistically dependent to their neighbor bits. In the next section, we
will propose a new testing method based on the mutual information.

3. Mutual information based online test

3.1. Theoretical backgrounds

Suppose that n-bit data by, bs,...,b, are generated from a TRNG. The
binary sequence is divided into several k-bit blocks of the form

(b1y- .. bi)y(bests- .- bag),... = b1, ba, ...
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where b; = (b(i—1)k+1,---,bix) fori =1,2,.... The proposed online test carries
out a random test based on each block b; for checking the statistical dependency
between two adjacent blocks b; and b;;; for all j.

Note that there are 2* possible patterns for each block b;. Let B; be the
random variable of ith random block. If the two consecutive blocks are sta-
tistically independent from each other and are stationary, then the following
property is satisfied. The relation between the joint probability of B; = b; and
Bi+1 = b;+1 and the marginal probabilities is given as

PI‘(Bl = bi; Bi+1 = bi+1) = PI’(BZ' = bz) . PY(BH_l = bi—i—l)
= [Pr(B; = b;))%

Then we can check a relation between the mutual information and block en-
tropies as in the following proposition.

Proposition 3.1. For a stationary random source, the mutual information
between two consecutive k-bit random blocks can be calculated as

(2) I(Bi+1;Bi) = 2H(Bl) - H(Bz—i-le)

Proof. For testing statistical dependency between blocks, we can measure the

mutual information between two blocks as I(B;; Bi+1), which can be rewritten
as

(3) I(Bit1; Bi) = H(B;) + H(Bit1) — H(Bi1Bi).
For the stationary random source, we have H(B;) = H(B;+1). Finally, we have

3.2. Generalization of the mutual information for online test

In this subsection, we will generalize Proposition 3.1 to the mutual infor-
mation estimation with longer message random variables in order to measure
long-term dependency of the produced random data blocks.

Proposition 3.2. The mutual information I(B;yn—1 -+ Biy1Bi; Bitn) can be
evaluated by estimating the following three entropies for distinct blocks of sizes
nk, k, and (n + 1)k

I(Bitn-1--Biy1Bi; Biyn) = H(Biyn—1--- Bit1B;) + H(Bity)
(4) — H(Bjyn - Bit1B;).
Proof. Since I(Bjtn—1-- Bit1Bi; Bitn) is just a mutual information between

two random variables with distinct lengths, we can similarly check the equality
(4) as in Proposition 3.1. O

Example 1. Suppose that we are going to estimate I(B;+1B;; Biy2). Then
we have to evaluate three entropies H(B;1+1B;), H(Bit2), and H(B;12B;i+1B;).
From these values, the conditional mutual information can be calculated as

(5) I(Bi+1Bi; Biv2) = H(Bi+1B;) + H(Bjy2) — H(Bi+2Bit1B;).
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It is possible to evaluate the conditional mutual information as follows. Sup-
pose that we are going to measure the mutual information between two blocks
Bi+n—1 s Bi—i—l and Bi-i—n given Bi; i.e., I(Bi—i-n—l ce Bi+1; Bz+n|Bz)

Proposition 3.3.
I(Bitn-1--Biy1; Bign|Bi) = H(Bitn-1--- Bitx1B;) + H(BiynB;)
— H(B;) — H(Bitn-1--Bi+1BitnB;).

Proof. By the chain rule of the mutual information, we have

(6) I(Bitn-1--Bit1;Bitn|B;) = Z I(Bitk; Bign|Biyk—1--- Bi).

k=1
Using (1) and (3), the identity (6) can be rewritten as in the statement of this
proposition. ]

That is, the conditional mutual information I(Bjtpn—1 - - Bit1; Biyn|Bi) can
be evaluated by estimating four entropies for distinct block size.

Example 2. Suppose that we are going to estimate I(B;t1; Bit2 | B;). Then
we have to evaluate four entropies H(B;41B;), H(B;42Bi), H(B;), and H(B;1+2
Bi+1B;). From these values, the conditional mutual information can be calcu-
lated as
(7)

I(Bit1;Bit2 | Bi) = H(Bi11B;) + H(Biy2B;) — H(B;) — H(B;42Bi+1B;).

For the stationary random source, we have H(B;11B;) = H(B;12B;). There-
fore, (7) can be simplified as

(8) I(Biy1; Biy2 | Bi) = 2H(Bi11B;) — H(B;) — H(Biy2Biy1Bi).
3.3. Design of online test

In estimating the joint Shannon entropies such as H(B;B;+1) and H(B;) in
(2), (5), and (7), there are two known approaches: counting the frequency of
each pattern or accumulating the minimum distance between the same patterns
[6, 2, 3]. In this subsection, we briefly review these two known approaches and
propose a new estimation method for Shannon entropy.

3.3.1. Frequency counting. This is a straightforward method of block entropy
estimation. Suppose that there are 2 memory buffers for each block pattern.
These buffers are used to store the frequency of each pattern in the given
random sequence. Suppose that N blocks are counted for this test. Let h(i)
(0 <4 < 2%) be the counted values stored in each buffer. That is, the sum of
all h(i)’s is equal to N after finishing the counting. After finishing the counting
of N blocks, Shannon entropy is calculated as

22 i N
fFC = Z %bgg W
1=0
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2k _1

(9) = logy N — % ; h(i)logy h(i).

3.3.2. Accumulation of reappearance distance. Maurer proposed a different ap-
proach to estimate Shannon entropy called as the universal statistical test [6].
Later, Coron refined Maurer’s universal statistical test in order to remove the
deviation from the real Shannon entropy values [3]. In their approaches, in-
stead of storing the number of occurrences of each pattern, the indices of the
patterns are stored in the 2* buffers. At the same time, the difference value
between the current pattern and the corresponding value stored in the memory
is accumulated according to the following equation

1 Q+K
(10) fuc = 4 > g(An),
n=0Q+1

i—1
) 1 1
g(l) - E;;a

where @ is the number of samples for initialization, K is the number of samples
for entropy evaluation, and A, is the difference between the index of the current
2k-bit pattern and that of the stored value (previous index of the same pattern)
in the corresponding buffer. Then it was shown that the test function fy/c
asymptotically converses to the entropy value of the given random sample [2].

3.3.3. Accumulating intermediate frequencies: a new proposal. In this subsec-
tion, we will propose another way to estimate Shannon entropy. In this method,
for a given block size k, the frequency of each block (2* blocks) is counted as in
the frequency counting method from Subsection 3.3.1. Each pattern is indexed
by a numerical order as i = Z?;& b;27. Suppose that h(b,, = i) is the value
of the ith counter when the nth block b,, corresponds to the pattern with in-
dex i. Hereafter, when the specific index number is not considered, we denote
h(b,, = i) as h(b,,) by abuse of notation.

Because the initial contents of registers are set zero, we can introduce the
initialization phase as for Coron’s test in order to collect some rough statistics
on the occurrence frequencies. After the initialization phase, the accumulation
stage begins. In the accumulation stage, the proposed test function is evaluated
according to the following way

Q+K

far=s 3 logy(n/h(B,).

n=Q+1
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That is, the proposed method is to take the time average of the logarithm of
the intermediate frequency ratio of each pattern

1 Q+K 1 Q+K
(11) far =4 Z logyn — —= Z log, [ (By)].

n=0Q+1 n=0Q+1
Note the difference between (9) and (11). The test value (11) can be continu-
ously updated during the counting.
The proposed test procedure can be summarized as in Algorithm 1.

Algorithm 1. Proposed algorithm for entropy estimation using accumulating
intermediate frequencies.
1) Initialization Phase
(1) Set 2* memory blocks as zero.
(2) While n < Q
(a) Take k-bit data by, = {bkn, bknt1s- - Okntk—1}-
(b) Increase h(i) by 1 at the ith memory block when i = Zf;é bien+527.
(¢) Increase n by 1.
2) Evaluation Phase
(1) Set fap =0and C =0.
(2) While n < K +Q
(a) Take k-bit data by, = {bkn, bknt1s- -+ Okntk—11-
(b) Increase C by 1.
(c) Increase h(i) by 1 at the ith memory block when i = Zf;é bent 27
(d) far « far +logyn/h(i).
(e) Increase n by 1.

(3) far < far/C.

It is easy to check that the expected value of the test function in (11) con-
verges to the entropy of the stationary random source as in the following the-
orem.

Theorem 3.4. The expected value of the test value fap in (11) by Algorithm 1
is the entropy of random source.

Proof. Suppose that ¢; is the probability of being B,, = 7, where ¢ is the index
of nth block. Then for large n, we have ¢; = ¢;(n) = h(B,, = b,, = i)/n, where
1= Z;:é bin+;27. Therefore, (11) can be rewritten as

1 Q+K 1 Q+K
far = K Z logy n — I Z log, ng;
n=0Q+1 n=Q+1
1 Q+K
- K Z log; gi.

n=Q+1
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FIGURE 4. Derivation of frequencies of 2-bit patterns from the
frequencies of 4-bit patterns.

For large n, ¢; converges to the probability of the pattern. Then the expectation
of the summand log, ¢; is given as

2k_1

Bllogy h(B,)] = = Y gilogyqi = H
=0

—

By).
O

Therefore, for the ergodic source, we can obtain the entropy value from the
proposed test functions.

3.3.4. Comparison between entropy estimation tests. In this subsection, we
propose an efficient architecture for the proposed online test. For the estima-
tion of the mutual information I(B;; B;11) between consecutive blocks, we have
to estimate both H(B;B;+1) and H(B;) at the same time, where it is neces-
sary to use 22¥ and 2% storage spaces. For the case of the frequency counting
approaches in Subsections 3.3.1 and 3.3.3, it is possible to reduce the number
of required storage space because specific sums of the number of occurrences of
2k-bit patterns can be used as for that of k-bit patterns. Fig. 4 illustrates an
example of the conversion from the number of 4-bit patterns to that of 2-bit
patterns under the assumption of the stationary random source. That is, it is
easy to see that if the upper k-bit can be treated as ‘don’t care’ bit among 2k-bit
patterns, by summing of 2¥ patterns with the same lower k bits, we can obtain
the number of occurrences of 2% k-bit patterns from the number of occurrences
of 2k-bit patterns, which reduces 2% storage spaces such as registers.
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TABLE 1. Comparison of characteristics for each entropy esti-
mation method

| | Freq. Counting | Maurer-Coron | New Proposition |

Logarithmic table Large Small Large
Number of Registers 22k 22k 4 ok 2%k
Samples Fixed Variable Variable
Initialization No Yes Yes
Convergence Speed Fast Slow Fast

Table 1 shows the comparison of major characteristics among three entropy
estimation methods. In the first row, we see that all of them require logarithmic
operations in (9), (10), and (11), which can be replaced with a lookup table.
However, especially for the case of Coron’s test, this table can be reduced to
contain only the values of {log, g(2),logy g(3), . ..,10g5 g(Lmax)}, where Ly is
the maximum distance between two adjacent blocks with the same index. In the
second row, as discussed earlier, for the cases of the frequency counting method
and the proposed methods, the counting results for longer blocks such as 2k-bit
can be used to count the occurrences of shorter blocks such as k-bit. However,
for the case of Coron’s entropy test, it is not trivial to reduce the number of
required storage space. In the third row, it is noted that the sample sizes for
Coron’s entropy test and the proposed scheme, which are based on the time
average of updated information, is more flexible than the frequency counting
method, which uses ensemble average. In the fourth row, we can see that
the initialization phase is necessary for Coron’s entropy test and the proposed
scheme, but not for the frequency counting. In the last row, it is said that the
frequency counting method and the proposed scheme require less number of
samples to obtain a result with a specific accuracy than Coron’s entropy test
does, which will be illustrated by a numerical simulation in Subsection 4.2.

4. Numerical results

In this section, we present some numerical results for the new proposed
entropy estimation method in Subsection 3.3.3 and the proposed online test
scheme for TRNGs.

4.1. Simulation setting

For numerical simulations, the random sequences with the specified depen-
dency based on the model in Fig. 1 are generated using a pseudo-random num-
ber generator. In order to generate random numbers with the specific transition
probability e, firstly a pseudo-random number with a uniform distribution be-
tween [0, 1] is generated. Then for the generation of binary random data, if this
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FIGURE 5. Performance of the proposed entropy estimation
scheme in Subsection 3.3.3 for various sample sizes such as
10,000, 50,000, and 150,000 blocks.

random number is greater than the specified value €, then the next bit is de-
cided as the inversion of exclusive OR (XOR) of the previous bits. Otherwise,
the next bit is the same as XOR of the previous bits.

There are two reasons to adopt a pseudo randomly generated sequences to
test the proposed scheme for TRNGs. First, it is highly difficult to generate
a random sequence with the specified statistical characteristics directly from
TRNGs. If we choose random sequences with specific statistical characteristics
among millions of random samples from TRNGs, then it is hard to determine
whether the collected random sequences actually have the characteristics or
not because these characteristics are not intentionally generated, but experi-
mentally estimated using some testing methods. In addition, a statistical test
will work for both pseudo randomly and true randomly generated sequences.
Therefore, it is reasonable to think that if a statistical test works for the pseudo
randomly generated random sequences, then it will work for the true randomly
generated random sequences also.

4.2. Performance of the proposed entropy estimation

As the first step, we check the performance of the proposed entropy estima-
tion scheme presented in Subsection 3.3.3. Fig. 5 shows the estimation results
of the proposed scheme with various sample sizes, 10,000, 50,000, 100,000, and
150,000 blocks. In this figure, the bias 0.5 means the perfectly balanced case,
ie., Pr(b; = 0) = Pr(b; = 1) = 0.5 for some i. We can see that as the sample
size increases, the test value converges to block Shannon entropy with block
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FIGURE 6. Performance of the proposed entropy estimation
scheme in Subsection 3.3.3 for the bias between 0.4 to 0.5.
This is an enlarged version of Fig. 5.

size k = 8. As we can see in Fig. 5, the test value is more deviated from the
exact Shannon entropy around the perfectly balance case. Fig. 6 is the enlarged
version of Fig. 5 around the bias from 0.4 to 0.5 in order to clearly show this
deviation. Because for nearby the perfectly balanced case, every pattern oc-
curs with almost the same probability. Therefore, samples for each pattern are
relatively shorter than for highly biased case (i.e., € ~ 0), where few patterns
are frequently occurred and enough samples are collected for those patterns.

Fig. 7 shows the effect of the initialization phase, which compares the simu-
lation results of 10,000 blocks with no initialization, initialization of 256 blocks,
2,560 blocks, and 5,120 blocks. If the number of the initialization is increasing,
the deviation is reducing.

Fig. 8 compares the proposed entropy estimation scheme with the Coron’s
entropy test with the same block size. Note that with the same number of
blocks, the new proposition shows less fluctuations than the Coron’s test does.
That is, the new proposed scheme is more stable than the Coron’s entropy
test with less number of blocks. Also note that with less number of blocks,
the results of the new proposed schemes are deviated from the actual Shannon
entropy values. However, as the number of blocks is increased, the estimated
value converges to the real Shannon entropy values for given bias.

4.3. Estimation of mutual information I(B;1; B;)

Fig. 9 shows the estimation results for the random sequences which are inten-
tionally generated to have 1-bit and 2-bit dependencies for the block size k = 4.
The horizontal axis in Fig. 9 corresponds to the transition probability e, which
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FIGURE 7. Performance of the proposed scheme in Subsec-
tion 3.3.3 for the distinct number of initialization blocks such
as 0, 256, 2,560, and 5,120 blocks.
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FicURE 8. Comparison of Coron’s entropy test in Subsec-
tion 3.3.2 and the proposed scheme in Subsection 3.3.3 for
10,000, 50,000 and 100,000 blocks.

can be presented as Pr(b; | b;—1) for one-bit dependency and as Pr(b; | b;—1,b;—2)
for two-bit dependency. Therefore, if the horizontal value approaches 0.5, we
have PI‘(bZ | bifl) ~ Pr(bz) ~ 0.5 or PI‘(bZ | bifl,bifg) ~ Pr(bz) ~ 05, which
means that the 7th bit is close to being independent from the previous bits,
vise versa. Because the block size is k = 4, we have estimation results for not
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FIGURE 9. Estimated Mutual Information using Proposi-
tion 3.1 for k£ = 4 and 150,000 blocks.

only the mutual information between 4-bit blocks, but also for both 8-bit block
entropy and 4-bit block entropy as in Fig. 10. Therefore, two thresholds can
be set as one for the uniformness criterion, and the other for the independency
criterion. For example, according to the AIS.31 [5], the threshold of the Coron’s
test with & = 8 is specified as 7.976. Similarly, we can experimentally set the
independency threshold as 0.001, which is almost the same amount as the uni-
formness criterion. However, it is possible to set another threshold depending
on the requirement of each application.

4.4. Estimation of mutual information I(B;2B;1; B;)

Fig. 11 shows the estimation results for the mutual information I(B;12B;41;
B;) for k = 2 with respect to the two bit dependency. Actually, this corre-
sponds to the mutual information between the 4-bit block and the previous
2-bit block. In Fig. 11, the horizontal axis corresponds to the transition prob-
ability e. For the estimation of I(B;y2B;y1; B;), we have to estimate three
values H(Bj+2B;+1B;), H(B;1+1B;), and H(B;) whose maximum values are 6,
4, and 2, respectively. In result, three entropy values are greater than 2 even
for very small €. Therefore, the mutual information is close to 2 at € — 0.

4.5. Estimation of conditional mutual information I(B;2; B;11|B;)

Fig. 12 shows the estimation results for the mutual information I(B;y2; B;y1]
B;) for k = 1 with respect to the two bit dependency. Again, the horizontal
axis in Fig. 12 corresponds to the transition probability e. For the estimation of
I(Bit+2Bit1; Bi), we have to estimate three values H (B;12B;+1B;), H(B;+1B;),
and H(B;) whose maximum values are 3, 2, and 1, respectively. In result, two
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FiGURE 10. Estimated Mutual Information using Proposi-
tion 3.1 for k£ = 4 and 150,000 blocks. The estimated entropies
for 8-bit/4-bit block sizes are depicted at the same time.
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F1Gure 11. Estimated Mutual Information using Proposi-
tion 3.2 for k = 2 and 150,000 blocks. The estimated entropies
for 6-bit/4-bit/2-bit block sizes are depicted at the same time.

entropy values H (B, 2B;11B;) and H(B;11B;) are greater than 2 and H(B;)
is equal to 1 (its maximum value) even for very small e. Therefore, the mutual
information is close to 1 at e — 0.
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FIGURE 12. Estimated Mutual Information using Proposi-
tion 3.3 for k£ = 1 and 150,000 blocks. The estimated entropies
for 3-bit/2-bit/1-bit block sizes are depicted at the same time.

5. Conclusions

In this paper, a new online test scheme for TRNGs is proposed based on the
mutual information between consecutive k-bit random blocks since the mutual
information is closely related to the amount of dependency between consecutive
random blocks. It is shown that the mutual information can be estimated using
two entropy values for the distinct sizes. Therefore, the number of occurrences
of 2k-bit blocks are counted as well as that of k-bit blocks for the estimation
of the mutual information for this test. By using small amount of additional
memory, the mutual information can be estimated as a measure oriented to the
dependency of random data from TRNGs.
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