• Title/Summary/Keyword: Random excitation

검색결과 225건 처리시간 0.023초

불규칙적으로 가진되는 동흡진기계의 비선형응답현상 (Nonlinear Response Phenomena of a Randomly Excited Vibration Absorber System)

  • 조덕상
    • 한국산업융합학회 논문집
    • /
    • 제3권2호
    • /
    • pp.141-147
    • /
    • 2000
  • The nonlinear response statistics of an autoparameteric system under broad-band random excitation is investigated. The specific system examined is a vibration absorber system with internal resonance, which is known to be a good model for a variety of engineering systems, including ship motions with nonlinear coupling between pitching and rolling motions. The Fokker-Planck equations is used to generate a general first-order differential equation in the dynamic moment of response coordinates. By means of the Gaussian closure method the dynamic moment equations for the random responses of the system are reduced to a system of autonomous ordinary differential equations. The jump phenomenon was found by Gaussian closure method under random excitation.

  • PDF

광대역 불규칙 가진력을 받는 탄성진자계의 내부공진효과 (Influence of Internal Resonance on Responses of a Spring-Pendulum System under Broad Band Random Excitation)

  • 이원경;조덕상
    • 소음진동
    • /
    • 제8권3호
    • /
    • pp.399-407
    • /
    • 1998
  • An investigation into the modal interaction of an autoparameteric systemunder broad-band random excitation is made. The specific system examined is a spring-pendulum system with internal resonance, which is known to be a good model for a variety of engineering systems, including ship motions with nonlinear coupling between pitching and rolling motions. By means of the Gaussian closure method the dynamic moment equations explaining the random responses of the system are reduced to a system of autonomous ordinanary differential equations of the first and second moments. In view of equilibrium solutions of this system and their stability we examine the system responses. The stabilizing effect of system damping is also examined.

  • PDF

LabVIEW를 이용한 Exciter 가진시험 모듈 개발 (Developing the Excitation Testing Module with LabVIEW)

  • 최기수;정의봉;원성규;안세진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.37-41
    • /
    • 2007
  • Fast Fourier Transformation(FFT) is one of the most useful way to analyze response signal for the purpose of grasping the dynamic characteristics of system. Excitation is a factor or process making noise or vibration. It's typical and simple experimental method widely used for catching hold of dynamic peculiar characters and modal behaviors of system by frequency analysis. There are harmonic excitation, impact excitation, random excitation, sweep excitation, chirp excitation and so on as the ideal method in an experiment using exciter. In this thesis, excitation testing module for NI-PXI equipment is developed. The analyzing module is developed with LabVIEW tool. A user can generate each waveform for shaking a structure and see quickly and easily modal shape of system with this module. This developed module will be expected to build up more convenient and serviceable measurement system.

  • PDF

Dynamic Analysis and Design of Uncertain Systems Against Random Excitation Using probabilistic Method

  • Moon, Byung-Young;Kang, Beom-Soo;Park, Jung-Hyen
    • Journal of Mechanical Science and Technology
    • /
    • 제16권10호
    • /
    • pp.1229-1238
    • /
    • 2002
  • In this paper, a method to obtain the sensitivity of eigenvalues and the random responses of the structure with uncertain parameters is proposed. The concept of the proposed method is that the perturbed equation of each uncertain substructure is obtained using the finite element method, and the perturbed equation of the overall structure is obtained using the mode synthesis method. By this way, the reduced order perturbed equation of the uncertain system can be obtained. And the response of the uncertain system is obtained using probability method. As a numerical example, a simple piping system is considered as an example structure. The damping and spring constants of the support are considered as the uncertain parameters. Then the variations of the eigenvalues, the correlation function and the power spectral density function of the responses are calculated. As a result, the proposed method is considered to be useful technique to analyze the sensitivities of eigenvalues and random response against random excitation in terms of the accuracy and the calculation time.

확률론적 특성을 갖는 선형 동적계의 과도 응답 해석 (Transient Response Analysis of Linear Dynamic System with Random Properties)

  • 김인학;독고욱
    • 전산구조공학
    • /
    • 제10권3호
    • /
    • pp.125-131
    • /
    • 1997
  • 대부분의 동적계는 기진력 및 계 인자들에 있어서 다양한 불확정 특성을 갖고 있다. 본 연구에서는 기진력의 불확정성과 계 인자들의 불확정성을 모두 갖는 선형 동적계에 대한 응답해석 과정을 제안하였다. 확률특성을 갖는 계 인자와 응답은 섭동법에 의해 모델링되었으며, 응답해석은 불규칙 진동 이론에 의하여 정식화 되었다. 또한 제안된 응답 모델에 의해 계산되기 어려운 응답의 평균에 대한 해석은 확률유한요소법을 사용하였다. 적용 예로서 정상 백색잡음 기진력을 받으며 불확정 질량과 스프링 상수를 갖는 1자유도계 문제에 대하여 과도응답을 계산하고, 그 결과를 수치 시뮬레이션 결과와 비교하여 그 타당성을 검토하였다.

  • PDF

Propagation of non-uniformly modulated evolutionary random waves in a stratified viscoelastic solid

  • Gao, Q.;Howson, W.P.;Watson, A.;Lin, J.H.
    • Structural Engineering and Mechanics
    • /
    • 제24권2호
    • /
    • pp.213-225
    • /
    • 2006
  • The propagation of non-uniformly modulated, evolutionary random waves in viscoelastic, transversely isotropic, stratified materials is investigated. The theory is developed in the context of a multi-layered soil medium overlying bedrock, where the material properties of the bedrock are considered to be much stiffer than those of the soil and the power spectral density of the random excitation is assumed to be known at the bedrock. The governing differential equations are first derived in the frequency/wave-number domain so that the displacement response of the ground may be computed. The eigen-solution expansion method is then used to solve for the responses of the layers. This utilizes the precise integration method, in combination with the extended Wittrick-Williams algorithm, to obtain all the eigen-solutions of the ordinary differential equation. The recently developed pseudo-excitation method for structural random vibration is then used to determine the solution of the layered soil responses.

Semi-active bounded optimal control of uncertain nonlinear coupling vehicle system with rotatable inclined supports and MR damper under random road excitation

  • Ying, Z.G.;Yan, G.F.;Ni, Y.Q.
    • Coupled systems mechanics
    • /
    • 제7권6호
    • /
    • pp.707-729
    • /
    • 2018
  • The semi-active optimal vibration control of nonlinear torsion-bar suspension vehicle systems under random road excitations is an important research subject, and the boundedness of MR dampers and the uncertainty of vehicle systems are necessary to consider. In this paper, the differential equations of motion of the coupling torsion-bar suspension vehicle system with MR damper under random road excitation are derived and then transformed into strongly nonlinear stochastic coupling vibration equations. The dynamical programming equation is derived based on the stochastic dynamical programming principle firstly for the nonlinear stochastic system. The semi-active bounded parametric optimal control law is determined by the programming equation and MR damper dynamics. Then for the uncertain nonlinear stochastic system, the minimax dynamical programming equation is derived based on the minimax stochastic dynamical programming principle. The worst-case disturbances and corresponding semi-active bounded parametric optimal control are obtained from the programming equation under the bounded disturbance constraints and MR damper dynamics. The control strategy for the nonlinear stochastic vibration of the uncertain torsion-bar suspension vehicle system is developed. The good effectiveness of the proposed control is illustrated with numerical results. The control performances for the vehicle system with different bounds of MR damper under different vehicle speeds and random road excitations are discussed.

집중질량 충격시스템의 불규칙가진에 대한 응답특성 (Response Characteristics of a Lumped Parameter Impact System under Random Excitation)

  • 이창희
    • 소음진동
    • /
    • 제9권4호
    • /
    • pp.778-784
    • /
    • 1999
  • A method for obtaining the motion of an impact system whose primary and secondary system are composed of lumped masses, springs and dampers, and all the contacts are made through spring and damping elements is presented. The frequency response functions derived from the equations of motion and the impulse response functions obtained from the inverse Fourier transform of the derived frequency response functions are used for the calculation of the system responses. The procedure developed for the calculation of displacements and force time-histories was based on the convolution integrals of impulse response functions and forces applied to the systems. Time histories of displacements and contact forces are obtained for the case where a random excitation is applied to a point in the system. Impact statistics such as contact forces and the time between impacts calculated from those time histories is presented.

  • PDF

불규칙 지반 가진력을 받는 탄성진자계의 비선형진동응답 (Nonlinear Vibration Responses of a Spring-Pendulum System under Random Base Excitation)

  • 조덕상
    • 한국정밀공학회지
    • /
    • 제18권3호
    • /
    • pp.175-181
    • /
    • 2001
  • An investigation into the response statistics of a spring-pendulum system whose base oscillates randomly along vertical and horizontal line is made. The spring-pendulum system with internal resonance examined is known to be a good model for a variety of engineering systems, including ship motions with nonlinear coupling between pitching and rolling motions. The Fokker-Planck equation is used to generate a general first-order differential equations for the random responses of the system are reduced to a system of autonomous ordinary differential equations. In view of equilibrium solutions of this system and their stability, the response statistics is examined. It is seen that increase in horizontal excitation level leads to a decreased width of the internal resonance region.

  • PDF

Stochastic ship roll motion via path integral method

  • Cottone, G.;Paola, M. Di;Ibrahim, R.;Pirrotta, A.;Santoro, R.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제2권3호
    • /
    • pp.119-126
    • /
    • 2010
  • The response of ship roll oscillation under random ice impulsive loads modeled by Poisson arrival process is very important in studying the safety of ships navigation in cold regions. Under both external and parametric random excitations the evolution of the probability density function of roll motion is evaluated using the path integral (PI) approach. The PI method relies on the Chapman-Kolmogorov equation, which governs the response transition probability density functions at two close intervals of time. Once the response probability density function at an early close time is specified, its value at later close time can be evaluated. The PI method is first demonstrated via simple dynamical models and then applied for ship roll dynamics under random impulsive white noise excitation.