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Stochastic ship roll motion via path integral method
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ABSTRACT: The response of ship roll oscillation under random ice impulsive loads modeled by Poisson arrival process is
very important in studying the safety of ships navigation in cold regions. Under both external and parametric random
excitations the evolution of the probability density function of roll motion is evaluated using the path integral (PI) approach.
The PI method relies on the Chapman-Kolmogorov equation, which governs the response transition probability density
functions at two close intervals of time. Once the response probability density function at an early close time is specified, its
value at later close time can be evaluated. The PI method is first demonstrated via simple dynamical models and then applied
for ship roll dynamics under random impulsive white noise excitation.
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INTRODUCTION

The influence of floating ice on the dynamic behavior of
ships and offshore structures depends on many factors such
as ice thickness and its relative speed with respect to the
floating structure. The ice resistance to ship motion forms an
essential problem in ship design and navigation. Furthermore,
local or global ice loads acting on ocean systems are random
and non-smooth when impact interaction takes place. Impact
loads on the bow of a ship navigating in solid ice may be
modeled by a Poisson law. The assessment of ice related
problems encountered by offshore structures as well as by
ships during their navigation has recently been documented
by Ibrahim et al. (2007). In view of ice loads on marine
systems, new design regulations have been introduced by
international organizations that are involved in the design and
building of ships as well as offshore structures.

Ice loads acting on ocean systems are random in nature
and have non-smooth characteristics when they are of impact
type. In full-scale experiments, measurements of ice local and
global loads revealed randomness in the ice forces and
pressures (see, e.g., Meyerhoff and Schlachter, 1980; and
Timco and Johnston, 2004). In some cases, ice loads are of
impact type and have been assumed as a Poisson arrival
process of loading events. Thus, one must deal with
probabilistic approaches when studying ships’ stochastic
stability, response, and reliability. The treatment of
dynamical systems under Poisson random processes has been
considered in references (e.g., Koyliioglu, et al., 1995; Di
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Paola and Pirrotta, 1999; and Proppe, 2003).

For systems under normal or non-normal white noise, the
response statistics may be obtained by solving the Fokker-
Plank Kolmogorov (FPK) equation or the Kolmogorov-Feller
equation. However, exact solutions of the partial differential
equations governing the evolution of the response probability
density function (pdf) are known only for very few cases as
shown by Caughey and Dienes (1961), Dimentberg (1982)
and Vasta, 1995). Alternatively, several approximate
solutions techniques have been developed including
variational methods based on eigenfunction expansion of the
transition pdf (Atkinson, 1973), finite element method
(Spencer and Bergman, 1993) and the path integration
approach (Koyliioglu et al., 1995). The PI approach is an
effective tool for evaluating the response in terms of
probability density at each time instant, for evaluating
moments of various orders, energy response pdf, first passage
time of strong nonlinear systems. This approach is based on
rewriting the FPK equation in integral form in which the
kernel is the transition probability density function. Thus one

can evaluate the response pdf at time (¢+7) when its value at

an early close time instant (¢) is already specified. The crucial
point is to define the kernel according to the system under
investigation. In the case of normal white noise, if 7 is small,
even if the system is nonlinear, the transition pdf is almost
Gaussian (short-time Gaussian approximation). It follows
that the kernel of the integral form is Gaussian and this
simplifies the analysis as shown by Barone et al. (2008). The
accuracy of this method was validated using Monte Carlo
simulation and the exact solution when the latter is available.
Recently, Di Paola and Santoro (2008) have studied the case
of Poisson white noise by evaluating the conditional
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probability density function (cpdf) in order to apply the PI
method also for these systems.

The path integral technique was applied to the roll
nonlinear motion of a ship in irregular waves by Kwon et al
(1993). The exciting moment due to the irregular waves was
modeled as a non-white noise. Both damping and nonlinear
restoring functions were included with the equivalent white-
noise intensity. Lin and Yim (1995) developed a stochastic
analysis scheme to examine the properties of chaotic roll
motion and capsize of ships subjected to periodic excitation
with a random noise disturbance. The associated Fokker-
Planck equation governing the evolution of the probability
density function of the roll motion was numerically solved by
the path integral solution procedure to obtain joint probability
density functions in state space. It was found that the
presence of noise enlarges the boundary of the chaotic
domains and bridges coexisting attracting basins in the local
regimes. The probability of capsize was considered as an
extreme excursion problem with the time-averaged
probability density function as an invariant measure. Another
version of the path integration approach based on the Gauss-
Legendre quadrature integration rule was proposed by Gu
(2006). It was applied for estimating the probability density
of the nonlinear roll motion of ships in stochastic beam seas.
The ship roll motion was described by a nonlinear random
differential equation that includes a nonlinear damping
moment and restoring moment. The results include the time-
evolution of the ship response probability density as well as
the tail region, where the probability value is very important
for the system reliability analysis.

The case of small ships with water on deck subjected to
random beam waves described by to a periodic force and
white noise perturbation was considered by Liqin and
Yougang (2007) using the path integral solution. This type of
ship motion is governed by two dynamical regions:
homoclinic and heteroclinic, where the heteroclinic model
emulates symmetric vessel capsize and the homoclinic model
represents a vessel with an initial bias caused by water on
deck. The random Melnikov mean square criterion was used
to determine the parameter domain for the ship's stochastic
chaotic motion. The evolution of the probability density
function of the roll response was calculated by solving the
stochastic differential equations using the path integral
method. It was found that in the probability density function
of the system has two peaks for which the response of the
system was found to jump from one peak to another for large
amplitudes of periodic excitation.Manotov and Naess (2009)
developed a combined analytical-numerical approach
referred to as the successive-transition method, which is
essentially a version of the path-integration solution and is
based on an analytical approximation for the transition
probability density. The method was applied to one-
dimensional nonlinear Ito's equation describing the velocity
of a ship maneuvering along a straight line under the action
of the stochastic drag due to wind or sea waves. It was also
used for the problem of ship roll motion up to its possible
capsizing. It was indicated that the advantage of the proposed
successive-transition is that it provides an account for the
damping matrix in the approximation.
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The case of Gaussian white noise acting simultaneously
with Poisson white noise has not yet been considered in the
literature and the present work is an attempt to extend the PI
method for this case. In particular, the method will be utilized
to examine the ship roll oscillation under parametric normal
white noise acting simultaneously with additive Poisson
white noise.

PATH INTEGRAL METHOD

This section provides the general features of the PI
method by adopting a simple nonlinear system driven by a
white noise described by the one-dimensional equation:

X(t)=—aX @)+ f(X,0)+W (1) (1)
X(O) = Xo

where f(X,f) is a deterministic nonlinear function of the
response X(¢) and time ¢, ais a positive parameter and W(z) is
a white noise and Xj, is the initial condition that may be either
deterministic or random (Gaussian or non-Gaussian).

The starting point of the PI method is the Chapman-
Kolmogorov equation that holds true, because of the
Markovian property of the response:

pt+)=[p, (xt+e%.0p, F.0dF ®

The numerical implementation of the PI method requires
selecting a computational domain D. It is convenient to select
a symmetrical computational domain with a given maximum
SIZ€, Xpax = 1], 1.€., -X;< x< x| The size of the domain is
identified by, first, running a Monte Carlo simulation with a
low number of samples. Then, dividing the domain in a
discrete number of intervals, n,, for each grid point, the path
integral from equation (2) can be evaluated. One has to
evaluate the kernel in equation (2), which requires the
conditional joint pdf. From the entire set of trajectories of the
response process, X(¢), one has to select those deterministic
values at time ¢, i.e., X, hereafter denoted as X(p)(see Fig.1),
by solving of the following differential equation:

X(p)=—aX(p)+ [(X,p)+W(i+p) )
X(0)=x

where X is a deterministic initial condition and 0<p<t. Note
that the cpdf of equation (1) coincides with the unconditional
pdf of equation (3) evaluated at 7, i.e.,

Py (x,1+7|X,0) = py(x,7) )

Fig.1 demonstrates the significance of the cpdf of the
stochastic process X(p) evaluated in p=r. These are the
general features of the PI method. To this end the problem is
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to specify the kernel, which is dependent on the system and
excitation characteristics.

Px(x,7) = py (x,t+ rl)?,t)

Fig.1Sample functions of the process X(p) and conditional pdjf.

Systems under Poisson White Noise

Sample functions of Poisson white noise process Wp(f) in
equation (1) may be written in the form

N (1)

W)=Y R3(t-T) (%)

where J(e)is the Dirac’s Delta function, R; is the i-th
realization of the random variable R with assigned probability
density function pg(r). T; is the i-th realization of the random
variable T independent of R and distributed in time according
to the Poisson law and N(¢) is the so-called counting process
giving the total number of impulse occurrences in [0,t). The
whole process defined by equation (5) is fully described by
the cumulants:

K, [ Wy (6)Wy (1) Wy (,)|[= 2E[R" 8 (6,~1,)..S(t,~t,) (6)

where A is the mean number of impulse occurrences per unit
time.
Replacing W(¢) by Wp(¢) in equation (1) one can describe

the evolution of the system response pdf by the Kolmogorov-
Feller equation

pu(xt) _

CU 2 e pe(xa)=2py(xt)

; (7)
+ 2| par=y)p(y)dy

where py(x,f) andpp(r) are the unconditional pdf of the
response process X(¢#) and of the random variable R,
respectively, and f(x,t) = —ax(t)+f(x,1).
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The cpdfpx(x,t+1x,f) may be obtained by evaluating the
unconditional pdf'in 7 of the following differential equation:

{)?(p)=—a)?(p)+f()?,p>+W,,(r+p); 0<psc o

X0)=x

Consideringz to be small, there are two possible different
situations in the interval (¢, ++7). The first does not contain
any spikes and this happens in mean 1-A(#)r times. The
second contains one spike whose amplitude possesses the
distribution of R. This situation happens A(f)z times. Since the
time interval 7 is small an approximation of X(¢), when no
spikes occur, is given by solving equation (1), in which we
set W(t)=Wp(t)=0, as:

X(r)=x-axt+ f(X,0)r = y(X,1,7) 9)

The function (x,t,7) will be denoted as y(x). When one
spike occurs, X(7) may be evaluated in the approximate form
X(r)=y(X)+R (10)

Equation (10) remains valid when 7 is small, but if 7is
not small the location of the spikes within the interval zwill
influence the value X(7). On the other hand, equation (9) is
deterministic over the time increment 1-&(z7)6 and thus the
entire sample functions of the response process gives a
contribution in the pdf of X(p) in the form (1-A()7)d(x-1(%)).

In the remaining A(#)r sample functions in which a spike
occurs one may inspect equation (10), which reveals that X{(r)
is a random variable composed of a deterministic plus a
random variable with a given pdf. It follows that the pdf of
X(p) in is pr(x—(X)), and this occurs over the time increment
é(t)o. The resulting cpdfis

Py(x,t+7[X,1)=(1-A()7)0(x - y(¥))

— (11)
+ A7 pp(x = (X))
Substituting equation (11) into equation (2), gives
Pt +0)=(1=A0)7) | 50— y(®)p, (%, )kt
- (12)

+AMO)T [ pye—yE)p, G

Since X¥ and y(x) are nonlinear the following relationship
holds

py(X,0)dx = p, (y(¥),1)dy(x) (13)

In this case, equation (12) may be rewritten in the form
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Py (x,t4+7) = (1= A()7) py (x,1)

+00 (14)
+ A0 [ pr(x=y)py (v,0)dy
where according to equation (9), one can write
N
py(y,t)=px(x=m (15)

()|

where g(y) is the inverse relationship obtained from equation
(9). Equation (14) represents an extension of the PI method to
a Poisson white noise input.

Equation (14) is a simple integral equation while the
Kolmogorov-Feller equation represented by equation (7) is
an integro-differential equation. In order to study the ship roll
motion another version of the PI method is necessary for the
case of combined normal and Poisson white noise.

Systems under Normal and Poisson white noise excitations

The c¢pdf of the response of systems driven
simultaneously by Gaussian white noise Wy(f) and Poisson
white noise W,(f), is not available, and hence the PI method
may not be implemented. The normal white noise, W,(?), is
characterized by the correlation function:

E[VVo(tl)VVo(tz )] = Q(t1)5(t1 _tz) = Q(tz)s(t1 _tz) (16)

where E[e] denotes the ensemble average, ¢(¢) is the strength
of the normal white noise (if W(?) is stationary then q(2)=q).
Note that we don’t have either an equation governing the
evolution of response pdf or an analytical expression for the
kernel in (2). However, the cpdfpy(x,t+1]x,f) may be obtained
by evaluating the unconditional pdf in z of the following
differential equation:

X(p)==aX(p)+ [(X.p)+W,(t+p)HW, (t+p)
X(0)=x

an

Again considering being small, there are two different
situations over the interval t. The first does not have spikes in
the presence of the Gaussian white noise, and this happens
over the time increment 1-A(¢)z. The second case does have
one spike whose amplitude possesses the distribution of R,
simultaneously with the Gaussian one. The latter situation
happens over the time increment A(?)z.

For the first case where no spikes occur, one has to solve
equation (17) under Gaussian white noise and setting

W,(t+p)=0. Furthermore, if small, the so called short time

Gaussian approximation may be used, i.e., px(x,t) follows a
Gaussian distribution. Then in the pdf of whole sample
functions of the response may take the following function.
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P = (1 — /11')¥
ol J27q(t)r (18)
_(x—=X—(—aX+ f(x,0)7)*
X exp[ 26](1)‘[

In the remaining time increment A(f)t a spike occurs with a
Gaussian white noise and one has to consider the pdf of a
sum of two random variables one of which is Gaussian and
the other is the random variable R with an assigned pdf. It
follows that in the whole sample function, in which the spike
occurs with the Gaussian white noise, one has a pdf of ¥ ()

in given by the convolution integral

Pxp)

° 1
= ﬂ —_—
A ( T)L[)\/m (19)
Xexp{ (£-F~(ax+/@0)0) ] po(i—E)dE

29(t)z
The resulting cpdf'is given by

py(at+7|X,0) =

B 1 (x—X—(—ox+ f(%,1)7)

L /11)«/27zq(t rexp[ 24(0)r J 20
T rx=%) (E-X—(ox+fE0)r)

) [ o] I

Substituting equation (20) into equation (2) yields the PI
solution extended to the case of combined case of Gaussian
and Poisson white noises. The expression given by equation
(20) is applied to the system (17) with a=1, and f(X,f)=-
1/2X(¢)|X(t). The Gaussian noise Wy(¢) is assumed to have
unit intensity, g=1, while the Poisson noise W,(f) possesses a
unitary mean rate arrival A, and pg(x) is Gaussian distributed
with mean ug=1.5 and variance ¢ =2.25. The initial condition
X, 1s a standard Gaussian distribution. In order to use the
short time Gaussian approximation the time interval is
selected to be 7=0.1. To validate the proposed method, Monte
Carlo (MC) simulation of equation (1) has been performed
using Euler’s integration scheme with 5000 samples and
increment of time 0.005 sec. Fig. 2(a) shows a three-
dimensional representation of the time evolution of the
response pdf with initial Gaussian pdf.

It is seen that as the time increases the response pdf
evolves to a bimodal representation with two peaks around
the zero mean value. The results are validated by MC
simulation and Fig. 2(b) shows a comparison of the stationary
response pdf as generated from MC simulation and PI
solution. The influence of the combined excitations on the
response pdf cannot be revealed directly from Fig. 2(b). In
order to assess this effect the pdf of each excitation should be
separately plotted.
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N(0,1)

py(x1)

time

(a) (b)

Fig. 2 Response probability density function: (a) Time
evolution of the response pdf as obtained by PI solution; (b)
Monte Carlo validation for the stationary state.

SHIP ROLL MOTION UNDER STOCHASTIC
AGENCIES

The study of ship dynamics in following sea waves was
first reported by Froude (1863) who observed that ships have
undesirable roll characteristics when the frequency of small
free oscillations in pitch is twice the frequency of a small free
oscillation in roll. It was Paulling and Rosenberg (1959) who
formulated the analytical modeling of the coupled roll-pitch
motion. This coupled motion is described by two nonlinear
differential equations. If the nonlinear effect of roll is
neglected, the pitch equation of motion is reduced to a linear
differential equation, which is free from roll motion terms.
When the pitch equation is solved, its response appears as a
coefficient to the restoring moment of roll motion, and the
roll equation of motion is reduced to Mathieu’s equation.
These studies did not take into account the nonlinear effects
of drag and restoring moments.

Various models of roll motion containing nonlinear terms
in damping and restoring moments have been studied by
many researchers and are documented by Ibrahim and Grace
(2010). For example, Bass and Haddara (1987, 1988)
considered various forms for the roll damping moment and
introduced two techniques to identify the parameters of the
various models together with a methodology for their
evaluation. Taylan (2000) demonstrated that different
nonlinear damping and restoring moment formulations
reported in the literature have resulted in completely different
roll amplitudes, and further yielded different ship stability
characteristics. Since ship capsizing is strongly dependent on
the magnitude of roll motions, an accurate estimation of roll
damping is crucial to the prediction of the ship motion
responses. Moreover, the designer should consider the
influence of waves on roll damping, especially nonlinear roll
damping of large-amplitude roll motion, and subsequently on
ship stability.

Different models for the damping moment introduced in
the ship rolling equation of motion were proposed in the
literature (see, e.g., Dalzell, 1976; Cardo, 1982; Mathisen and
Price, 1984). They contain linear-quadratic or linear-cubic in
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the angular roll velocity. The damping characteristics of a
variety of ship shapes and offshore structures undergoing roll
oscillation in the presence of ocean waves have been assessed
by Chakrabarti (2001). Chakrabarti relied on empirical
formulas derived from a series of model experiments reported
by lkeda et al (1978, 1993). These experiments were
performed on two-dimensional shapes. El-Bassiouny (2007)
studied the dynamic behavior of ships roll motion by
considering different forms of damping moments consisting
of the linear term associated with radiation, viscous damping,
and a cubic term due to frictional resistance and eddies
behind bilge keels and hard bilge corners. The damping roll
moment B( @) is nonlinear and may be expressed by the
expression, (Chakrabarti, 2001; El-Bassiouny, 2007),

K
B(p)=cp+c,dldl+esd’ +..= 2 adld T
k=1

where ¢ is the linear damping coefficient and ¢;, i=2,3,... are
the nonlinear damping coefficients. The first term is the usual
linear viscous damping; the second is the quadratic damping
term originally developed by Morison et al. (1950). It is in
phase with the velocity but it is quadratic because the flow is
separated and the drag is primarily due to pressure rather than
the skin friction. Sarpkaya and Isaacson (1981) provided a
critical assessment of Morison’s equation, which describes
the forces acting on a pile due to the action of progressive
waves. The third term is cubic nonlinear damping.

The nonlinear damping moment is proportional to the
product of the roll velocity times its absolute value and acts
in a direction opposite to the velocity. This is usually

represented by the expression, a¢|¢ , where a is a constant

determined experimentally. The righting arm curve of a ship,
known also as the restoring lever has been represented by an
odd-order polynomial up to different degrees (Nayfeh and
Balachandran, 1995; Arnold, et al., 2004; Surendran, et al.,
2005; Bulian, 2005). Different representations of the
restoring moment have been proposed in the literature in
which the restoring moment M,( ¢) is represented by the
general polynomial

M (¢)=hk+ksp® +ksp® +k,p” +... (22)

where k>0, k>0, k>0, and k>0, for a damaged vessel, but
k=0, for an intact vessel.

Based on these considerations the roll dynamics of a ship
subjected to simultaneous impulse excitation, Wp(?), and
parametric random excitation, W, keeping only cubic terms
in the restoring moment is described by the equation of
motion:

§+280, g+ a|d|+ 0lp—08" + Wo(1)=Wp(1)

! ) (23)
¢(0) =d ¢(0) =&
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where ¢ is the ship roll angle, w,is the natural frequency of
the ship roll oscillation,Z is a linear damping factor, the

third term represents nonlinear damping, and the cubic term
is due to the restoring moment together with the linear term.
In particular Wy(f) represents the pitch angle which is
assumed to be random stationary process and the right-hand
side is the sea wave moment acting on the ship and is
represented by the Poisson random process given by equation

(5). Note that at the roll angle ¢ =zw, / \/g, the ship

experiences capsizing. If we consider W(f) as a normal white
noise, the ship roll dynamics is captured by the solution of a
single oscillator under parametric normal white noise acting
simultaneously with an external Poisson white noise.
Equation (23) may be rewritten in terms of state variables as
follows

Z(t) = DZ(t) +£(Z,0) + LW, (1)

z0)] [oo] . [0 1
where #U '[th)Hfz)(tJ’D{—w: —szj

0 0
f(ﬂt)”)z[—azz 12| +67 —WJ"L:H

For this case the Chapman Kolmogorov equation is given in
the form:

(24)

+00 @400 .
pz(zl,zz,t+r):f_oO J.—oo pZ(zl,zz,t+r|zl,zz,t)

xp,(z,,z,,t)dz,d z,

(25)

The conditional pdf in equation (25) may be derived by
considering the pdf of the response over the time interval of
the following system

NI

(P)=DZ(p)+t(Z,p)+ LW (1+p)

(0)=z

where the initial conditions are the considered deterministic,
z' = [z, Z). Equations (26) may be rewritten in the state
vector form

(26)

NI

Z,(p)=7,(p)

Zz (p)=-2w,Z,(p)-;Z (p)
~aZ,(p)|Z.(p)|+6Z (p) ~Z Wy (t+p)
+W,(t+p)

Z,(0)=z; Z,(0) =z,

27

For small 7, equations (27) yields the following statistics
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E[Z (‘c)] =7, +2,1=3,(3,,2,); G% (t)=0 (28)

Pz (21,2,,2,;7) =0(2,-),(3,,7,)) (29)

Again, for small 7 there are two different situations over time
interval 7. The first does not contain spikes in the presence of
the normal white noise, and this happens over the time
increment 1-A(f)z. The second includes one spike which
occurs simultaneously with the normal white noise over the
time increment A(f)z. In the first case we set Wp(1)=0

E[Z.()]=%-(Yoz+ ez vam | -05)

Since Z; is deterministic, the two processes Zand Z, are
independent. In the absence of spikes the contribution for the
whole conditional pdf'in equation (25) is given in the form

pZ(ZIJZZ’t+T| 21’22’t)n0 spikes
(2-(z +27))

\/ 27zqt

(Zz_yz (2122))2 (1

1-2 i
=(-47) 2z/qr

xexp| —

The other contribution is given by the convolution integral of
both excitations:

pZ(Zl’ZZ’t+T|ZI’ZZ’t)0nespike

_ /175(21 -(7 +Ezz'))

(32)
\27Zlqt
+00 _ P 2
« [exp| ~EmRCLRD |, (o _pae
—0 2Zl qT
The cpdf of the kernel of equation (25) is
pz(zl,zz,t+r|21,22,t)
=5(z—(5+27))
NN
(1-47) (Zz —) (ZI’ZZ )) (33)
x| —eXp| — —
J27Zlgr 2z/qr
At F (f_yz(fpgz))z
+———— | exp| ——— " |pr(z, —&)dS
J27Zlgr :[o ( 2zqr pris

The ship roll response pdf is determined for (=0.1, w=1,
a=0.005, and 6=0.006. The external Poisson white noise
Wp(f)has a jump Gaussian distribution pp(x) with zero mean
and standard deviation 63=0.07, and the mean rate arrival
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/A=1/3. The parametric normal white noise W(¢) is assumed to
possess an intensity parameter g=0.05. The initial condition is

p ¢¢(¢, $;0) assumed to be a bivariate normal distribution

with vector mean (0.05,0.025) and covariance matrix

s_[013% 0
0 0133

Integrals have been performed numerically on a grid of
A¢=A¢$=0.01 and time step 7=0.1sec.

Fig. 3 shows the evolution of the response pdf at various
time instants starting from the initial condition. It is seen that
the ship response pdf is essentially non-Gaussian and the
mean value is shifted with time towards the zero value. The
observed asymmetry of the response pdf is mainly attributed
to the system nonlinearity and to the fact that the excitation is
due to the beam sea waves (i.e., only of one side of the ship
beam).

04 <002 00 02 04
¢

Fig. 3 Response pdf at discrete time intervals.

The influence of the mean rate arrival is evaluated by
considering different values of /=1/3, 1, and 3. These values
are selected with large difference to reveal the influence the
mean rate on the response pdf as it increases. The response
pdf of ship roll angle is plotted in Fig. 4 and reveals that as
the mean rate arrival of ice impacts increases the response pdf
is found to be spread and the extreme ship roll angle is
extended towards a dangerous value of the capsizing roll
angle. Furthermore, as the mean rate arrival increases, the
peak of the response pdf is reduced. In other words, the
probability of the ship response to reach the capsizing angle

increases as the mean rate arrival increases.

CONCLUSIONS

The method of path integral has been implemented to the
problem of ship roll oscillations subjected to simultaneous
white noise parametric excitation and addition pulse
excitation. The additive excitation simulates the pulse of
random events of floating ice impact to the ship. It has been
found that the evolution of the ship response probability
density function is essentially non-Gaussian and the mean
value is shifted with time towards a zero value. As the mean
rate arrival of ice impacts increases the response pdf'is found
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to be spread and the extreme ship roll angle is extended
towards a dangerous value of the capsizing roll angle.

2.5,

g A=1/3
2.0
L5
10|
0.5
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-1.0 -0.5 0.0 0.5 1.0
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¢

Fig. 4 Response pdf of ship roll angle for three different
values of the mean rate arrival. Parameter A=1/3,1and. 3.
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