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probability density function (cpdf) in order to apply the PI 
method also for these systems.  

The path integral technique was applied to the roll 
nonlinear motion of a ship in irregular waves by Kwon et al 
(1993). The exciting moment due to the irregular waves was 
modeled as a non-white noise. Both damping and nonlinear 
restoring functions were included with the equivalent white-
noise intensity. Lin and Yim (1995) developed a stochastic 
analysis scheme to examine the properties of chaotic roll 
motion and capsize of ships subjected to periodic excitation 
with a random noise disturbance. The associated Fokker-
Planck equation governing the evolution of the probability 
density function of the roll motion was numerically solved by 
the path integral solution procedure to obtain joint probability 
density functions in state space. It was found that the 
presence of noise enlarges the boundary of the chaotic 
domains and bridges coexisting attracting basins in the local 
regimes. The probability of capsize was considered as an 
extreme excursion problem with the time-averaged 
probability density function as an invariant measure. Another 
version of the path integration approach based on the Gauss-
Legendre quadrature integration rule was proposed by Gu 
(2006). It was applied for estimating the probability density 
of the nonlinear roll motion of ships in stochastic beam seas. 
The ship roll motion was described by a nonlinear random 
differential equation that includes a nonlinear damping 
moment and restoring moment. The results include the time-
evolution of the ship response probability density as well as 
the tail region, where the probability value is very important 
for the system reliability analysis.  

The case of small ships with water on deck subjected to 
random beam waves described by to a periodic force and 
white noise perturbation was considered by Liqin and 
Yougang (2007) using the path integral solution. This type of 
ship motion is governed by two dynamical regions: 
homoclinic and heteroclinic, where the heteroclinic model 
emulates symmetric vessel capsize and the homoclinic model 
represents a vessel with an initial bias caused by water on 
deck. The random Melnikov mean square criterion was used 
to determine the parameter domain for the ship's stochastic 
chaotic motion. The evolution of the probability density 
function of the roll response was calculated by solving the 
stochastic differential equations using the path integral 
method. It was found that in the probability density function 
of the system has two peaks for which the response of the 
system was found to jump from one peak to another for large 
amplitudes of periodic excitation.Manotov and Naess (2009) 
developed a combined analytical-numerical approach 
referred to as the successive-transition method, which is 
essentially a version of the path-integration solution and is 
based on an analytical approximation for the transition 
probability density. The method was applied to one-
dimensional nonlinear Ito's equation describing the velocity 
of a ship maneuvering along a straight line under the action 
of the stochastic drag due to wind or sea waves. It was also 
used for the problem of ship roll motion up to its possible 
capsizing. It was indicated that the advantage of the proposed 
successive-transition is that it provides an account for the 
damping matrix in the approximation. 

The case of Gaussian white noise acting simultaneously 
with Poisson white noise has not yet been considered in the 
literature and the present work is an attempt to extend the PI 
method for this case. In particular, the method will be utilized 
to examine the ship roll oscillation under parametric normal 
white noise acting simultaneously with additive Poisson 
white noise.  

 
 
 

PATH INTEGRAL METHOD 
 
This section provides the general features of the PI 

method by adopting a simple nonlinear system driven by a 
white noise described by the one-dimensional equation: 
 

0

( ) ( ) ( , ) ( )
(0)

X t X t f X t W t
X X





   



                (1) 

 
where f(X,t) is a deterministic nonlinear function of the 
response X(t) and time t, αis a positive parameter and W(t) is 
a white noise and Χ0 is the initial condition that may be either 
deterministic or random (Gaussian or non-Gaussian). 

The starting point of the PI method is the Chapman-
Kolmogorov equation that holds true, because of the 
Markovian property of the response: 
 

( , ) ( , , ) ( , )X X X

D

p x t p x t x t p x t d x           (2) 

 
The numerical implementation of the PI method requires 

selecting a computational domain D. It is convenient to select 
a symmetrical computational domain with a given maximum 
size, xmax = |x1|, i.e., -x1≤ x≤ x1. The size of the domain is 
identified by, first, running a Monte Carlo simulation with a 
low number of samples. Then, dividing the domain in a 
discrete number of intervals, nx, for each grid point, the path 
integral from equation (2) can be evaluated. One has to 
evaluate the kernel in equation (2), which requires the 
conditional joint pdf. From the entire set of trajectories of the 
response process, X(t), one has to select those deterministic 
values at time t, i.e., x̅, hereafter denoted as X̅(ρ)(see Fig.1), 
by solving of the following differential equation: 
 

( ) ( ) ( , ) ( )

(0)

X X f X W t

X x

         






 

(3) 

 
where x̅ is a deterministic initial condition and  0≤ρ≤τ. Note 
that the cpdf of equation (1) coincides with the unconditional 
pdf of equation (3) evaluated at , i.e., 
 

( , , ) ( , )X Xp x t x t p x  
                    

(4) 

 
Fig.1 demonstrates the significance of the cpdf of the 

stochastic process X̅(ρ) evaluated in ρ=τ. These are the 
general features of the PI method. To this end the problem is 
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to specify the kernel, which is dependent on the system and 
excitation characteristics.   

 

 
 

Fig.1Sample functions of the process X̅(ρ) and conditional pdf. 

 
Systems under Poisson White Noise 
 

Sample functions of Poisson white noise process WP(t) in 
equation (1) may be written in the form  
 

( )

1

( ) ( )
N t

P i i
i

W t R t T


  
                          

(5) 

 
where δ(●)is the Dirac’s Delta function, Ri is the i-th 
realization of the random variable R with assigned probability 
density function pR(r). Ti is the i-th realization of the random 
variable T independent of R and distributed in time according 
to the Poisson law and N(t) is the so-called counting process 
giving the total number of impulse occurrences in [0,t). The 
whole process defined by equation (5) is fully described by 
the cumulants: 
 

         1 2 1 2 1
n

n n nP P PK W t W t ...W t E R t t ... t t          
 

(6) 

 
where λ is the mean number of impulse occurrences per unit 
time.  

Replacing W(t) by WP(t) in equation (1) one can describe 
the evolution of the system response pdf by the Kolmogorov-
Feller equation 
 

X
X X

R X

p ( x,t )
( ( x,t )p ( x,t )) p ( x,t )

t x

p ( r y )p ( y )dy

 






 
  

 

 
(7) 

 
where pX(x,t) andpR(r) are the unconditional pdf of the 
response process X(t) and of the random variable R, 
respectively, and (x,t) = x(t)+f(x,t). 

 

The cpdfрX(x,t+τ|x̅,t) may be obtained by evaluating the 
unconditional pdf in τ of the following differential equation: 

 

( ) ( ) ( , ) ( ); 0

(0)

PX X f X W t

X x

            









     

(8) 

 
Considering to be small, there are two possible different 

situations in the interval (t, t+τ). The first does not contain 
any spikes and this happens in mean 1-λ(t)τ times. The 
second contains one spike whose amplitude possesses the 
distribution of R. This situation happens λ(t)τ times. Since the 
time interval  is small an approximation of X̅(t), when no 
spikes occur, is given by solving equation (1), in which we 
set W(t)=WP(t)=0, as: 
 

( ) ( , ) ( , , )X x x f x t y x t                      (9) 

 
The function (x̅,t,τ) will be denoted as y(x̅). When one 

spike occurs, X̅(τ) may be evaluated in the approximate form 
 

( ) ( )X y x R                            (10) 

 
Equation (10) remains valid when  is small, but if is 

not small the location of the spikes within the interval will 
influence the value X̅(τ). On the other hand, equation (9) is 
deterministic over the time increment 1-ë(t)ô and thus the 
entire sample functions of the response process gives a 
contribution in the pdf of X̅(ρ) in the form (1-λ(t)τ)δ(x-y(x̅)). 

In the remaining λ(t)τ sample functions in which a spike 
occurs one may inspect equation (10), which reveals that X̅(τ) 
is a random variable composed of a deterministic plus a 
random variable with a given pdf. It follows that the pdf of 
X̅(ρ) in is рR(x–y(x̅)), and this occurs over the time increment 
ë(t)ô. The resulting cpdf is 
 

( , | , ) (1 ( ) ) ( ( ))

( ) ( ( ))
X

R

p x t x t t x y x

t p x y x

   
 

   
         

(11) 

 
Substituting equation (11) into equation (2), gives 
 

( , ) (1 ( ) ) ( ( )) ( , )

( ) ( ( )) ( , )

X X

R X

p x t t x y x p x t dx

t p x y x p x t dx

   

 









   

 




        (12) 

 
Since x̅ and y(x̅) are nonlinear the following relationship 
holds 
 

( , ) ( ( ), ) ( )X Yp x t dx p y x t dy x
               

(13) 

 
In this case, equation (12) may be rewritten in the form  
 

 

 
Xp x,t

x

t t  

  XE 

),,(),( XX txτtxpτxp 

 X 



 
Xp x,t

x

t t  

  XE 

),,(),( XX txτtxpτxp 
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( , ) (1 ( ) ) ( , )

( ) ( ) ( , )

X Y

R Y

p x t t p x t

t p x y p y t dy

  

 




  

 
      

(14) 

 
where according to equation (9), one can write  
 

( ), )( , ) (
( )Y X

g y tp y t p x
y x

 


                     

(15) 

 
where g(y) is the inverse relationship obtained from equation 
(9). Equation (14) represents an extension of the PI method to 
a Poisson white noise input.  
Equation (14) is a simple integral equation while the 
Kolmogorov-Feller equation represented by equation (7) is 
an integro-differential equation. In order to study the ship roll 
motion another version of the PI method is necessary for the 
case of combined normal and Poisson white noise. 

 
Systems under Normal and Poisson white noise excitations 
 

The cpdf of the response of systems driven 
simultaneously by Gaussian white noise W0(t) and Poisson 
white noise Wp(t), is not available, and hence the PI method 
may not be implemented. The normal white noise, Wp(t), is 
characterized by the correlation function: 
 

0 1 0 2 1 1 2 2 1 2[ ( ) ( )] ( ) ( ) ( ) ( )E W t W t q t t t q t t t         (16) 

 
where E[●] denotes the ensemble average, q(t) is the strength 
of the normal white noise (if W0(t) is stationary then q(t)=q). 
Note that we don’t have either an equation governing the 
evolution of response pdf or an analytical expression for the 
kernel in (2). However, the cpdfрX(x,t+τ|x̅,t) may be obtained 
by evaluating the unconditional pdf in   of the following 
differential equation: 
 

0( ) ( , ) ( )+ ( )

(0)

pX X( ) f X W t W t

X x

     



     





   

(17) 

 
Again considering being small, there are two different 

situations over the interval τ. The first does not have spikes in 
the presence of the Gaussian white noise, and this happens 
over the time increment 1-λ(t)τ. The second case does have 
one spike whose amplitude possesses the distribution of R, 
simultaneously with the Gaussian one. The latter situation 
happens over the time increment λ(t)τ.  
For the first case where no spikes occur, one has to solve 
equation (17) under Gaussian white noise and setting 

Wp(t+ρ)=0. Furthermore, if small, the so called short time 
Gaussian approximation may be used, i.e., pX(x,τ) follows a 
Gaussian distribution. Then in the pdf of whole sample 
functions of the response may take the following function. 
 

 
(1 )

2

( )
11

2 ( )

( ( ( , )) )exp
2 ( )

X
p

q t

x x x f x t
q t


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 

 




 
 
 
 

 

   
         

(18) 

 
In the remaining time increment λ(t)τ a spike occurs with a 
Gaussian white noise and one has to consider the pdf of a 
sum of two random variables one of which is Gaussian and 
the other is the random variable R with an assigned pdf. It 
follows that in the whole sample function, in which the spike 
occurs with the Gaussian white noise, one has a pdf of ( )X   

in given by the convolution integral   
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2

1
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exp ( )

2 ( )
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R
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x x f x t
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
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

  

(19) 

 
The resulting cpdf is given by 
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1 exp
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
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
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 
  
 
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 
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(20) 

 
 
Substituting equation (20) into equation (2) yields the PI 

solution extended to the case of combined case of Gaussian 
and Poisson white noises. The expression given by equation 
(20) is applied to the system (17) with α=1, and f(X,t)=-
1/2X(t)|X(t). The Gaussian noise W0(t) is assumed to have 
unit intensity, q=1, while the Poisson noise Wp(t) possesses a 
unitary mean rate arrival λ, and pR(x) is Gaussian distributed 
with mean μR=1.5 and variance σ =2.25. The initial condition 
X0 is a standard Gaussian distribution. In order to use the 
short time Gaussian approximation the time interval is 
selected to be τ=0.1. To validate the proposed method, Monte 
Carlo (MC) simulation of equation (1) has been performed 
using Euler’s integration scheme with 5000 samples and 
increment of time 0.005 sec. Fig. 2(a) shows a three-
dimensional representation of the time evolution of the 
response pdf with initial Gaussian pdf.  

It is seen that as the time increases the response pdf 
evolves to a bimodal representation with two peaks around 
the zero mean value. The results are validated by MC 
simulation and Fig. 2(b) shows a comparison of the stationary 
response pdf as generated from MC simulation and PI 
solution. The influence of the combined excitations on the 
response pdf cannot be revealed directly from Fig. 2(b). In 
order to assess this effect the pdf of each excitation should be 
separately plotted. 
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where φ is the ship roll angle, ωnis the natural frequency of 
the ship roll oscillation,  is a linear damping factor, the 

third term represents nonlinear damping, and the cubic term 
is due to the restoring moment together with the linear term. 
In particular W0(t) represents the pitch angle which is 
assumed to be random stationary process and the right-hand 
side is the sea wave moment acting on the ship and is 
represented by the Poisson random process given by equation 

(5). Note that at the roll angle c n /    , the ship 

experiences capsizing. If we consider W0(t) as a normal white 
noise, the ship roll dynamics is captured by the solution of a 
single oscillator under parametric normal white noise acting 
simultaneously with an external Poisson white noise. 
Equation (23) may be rewritten in terms of state variables as 
follows 
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For this case the Chapman Kolmogorov equation is given in 
the form: 
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The conditional pdf in equation (25) may be derived by 
considering the pdf of the response over the time interval of 
the following system 
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where the initial conditions are the considered deterministic, 
z̅T = [z̅1, z̅2]. Equations (26) may be rewritten in the state 
vector form 
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For small τ, equations (27) yields the following statistics 
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Again, for small τ there are two different situations over time 
interval τ. The first does not contain spikes in the presence of 
the normal white noise, and this happens over the time 
increment 1-λ(t)τ. The second includes one spike which 
occurs simultaneously with the normal white noise over the 
time increment λ(t)τ. In the first case we set WP(t)=0  
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Since Z1 is deterministic, the two processes Z1and Z2 are 
independent. In the absence of spikes the contribution for the 
whole conditional pdf in equation (25) is given in the form 
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The other contribution is given by the convolution integral of 
both excitations: 
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The cpdf of the kernel of equation (25) is 
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The ship roll response pdf is determined for ζ=0.1, ω=1, 
ɑ=0.005, and δ=0.006. The external Poisson white noise 
WP(t)has a jump Gaussian distribution pR(x) with zero mean 
and standard deviation R=0.07, and the mean rate arrival 

(33) 
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λ=1/3. The parametric normal white noise W0(t) is assumed to 
possess an intensity parameter q=0.05. The initial condition is 

( , ;0)p  
 assumed to be a bivariate normal distribution 

with vector mean (0.05,0.025) and covariance matrix
2

2

0.133 0

0 0.133

 
 
 
 


.

 

Integrals have been performed numerically on a grid of 
∆ϕ=∆ϕ=0.01 and time step τ=0.1sec. 

Fig. 3 shows the evolution of the response pdf at various 
time instants starting from the initial condition. It is seen that 
the ship response pdf is essentially non-Gaussian and the 
mean value is shifted with time towards the zero value. The 
observed asymmetry of the response pdf is mainly attributed 
to the system nonlinearity and to the fact that the excitation is 
due to the beam sea waves (i.e., only of one side of the ship 
beam). 

 

 
Fig. 3 Response pdf at discrete time intervals. 
 

The influence of the mean rate arrival is evaluated by 
considering different values of λ=1/3, 1, and 3. These values 
are selected with large difference to reveal the influence the 
mean rate on the response pdf as it increases.  The response 
pdf of ship roll angle is plotted in Fig. 4 and reveals that as 
the mean rate arrival of ice impacts increases the response pdf 
is found to be spread and the extreme ship roll angle is 
extended towards a dangerous value of the capsizing roll 
angle. Furthermore, as the mean rate arrival increases, the 
peak of the response pdf is reduced. In other words, the 
probability of the ship response to reach the capsizing angle 
increases as the mean rate arrival increases. 

 
 
 
CONCLUSIONS 
 
The method of path integral has been implemented to the 
problem of ship roll oscillations subjected to simultaneous 
white noise parametric excitation and addition pulse 
excitation. The additive excitation simulates the pulse of 
random events of floating ice impact to the ship. It has been 
found that the evolution of the ship response probability 
density function is essentially non-Gaussian and the mean 
value is shifted with time towards a zero value. As the mean 
rate arrival of ice impacts increases the response pdf is found 

to be spread and the extreme ship roll angle is extended 
towards a dangerous value of the capsizing roll angle. 

 

 
Fig. 4 Response pdf of ship roll angle for three different 
values of the mean rate arrival. Parameter λ=1/3,1and. 3. 
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