Browse > Article
http://dx.doi.org/10.3744/JNAOE.2010.2.3.119

Stochastic ship roll motion via path integral method  

Cottone, G. (Dipartimento do Ingegneria Strutturale Aerospazialee Geotecnica, Viale delle Scienze)
Paola, M. Di (Dipartimento do Ingegneria Strutturale Aerospazialee Geotecnica, Viale delle Scienze)
Ibrahim, R. (Wayne State Uiversity, Department of Mechanical Engineering)
Pirrotta, A. (Dipartimento do Ingegneria Strutturale Aerospazialee Geotecnica, Viale delle Scienze)
Santoro, R. (Dipartimento do Ingegneria Strutturale Aerospazialee Geotecnica, Viale delle Scienze)
Publication Information
International Journal of Naval Architecture and Ocean Engineering / v.2, no.3, 2010 , pp. 119-126 More about this Journal
Abstract
The response of ship roll oscillation under random ice impulsive loads modeled by Poisson arrival process is very important in studying the safety of ships navigation in cold regions. Under both external and parametric random excitations the evolution of the probability density function of roll motion is evaluated using the path integral (PI) approach. The PI method relies on the Chapman-Kolmogorov equation, which governs the response transition probability density functions at two close intervals of time. Once the response probability density function at an early close time is specified, its value at later close time can be evaluated. The PI method is first demonstrated via simple dynamical models and then applied for ship roll dynamics under random impulsive white noise excitation.
Keywords
Ship roll; Random impulsive ice loading; Poisson distribution; Path integral; Parametric random excitation; Chapman-Kolmogorov equation;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Ibrahim, R.A. Chalhoub, N.G. and Falzarano, J., 2007. Ice Interaction with Ships and Ocean Structures and Their Control. ASME, Appl Mech Rev, 60(5), pp. 246-289.   DOI   ScienceOn
2 Ibrahim, R.A. and Grace, I.M., 2010. Modeling of ship roll dynamics and its coupling with heave and pitch. Mathematical Problems in Engineering, pp. 1-31.
3 Ikeda, Y. Himeno, Y. and Tanaka, N., 1978. Components of Roll Damping of Ships at Forward Speed,Journal of Society Naval Architects, 143, pp. 121-133.
4 Arnold, L. Chueshov, I. and Ochs, G., 2004. Stability and Capsizing of Ships in Random Sea – A Survey. Nonlin Dyn, 36, pp.135-179.   DOI
5 Atkinson, J.D., 1973. Eigenfunction expansions for randomly excited non-linear systems. J Sound Vib, 30, pp. 153-172.   DOI   ScienceOn
6 Barone, G. Navarra G. and Pirrotta, A., 2008. Probabilistic response of linear structures equipped with nonlinear damper devices (PIS method). Probab Eng Mech, 23(2-3), pp.125-133.   DOI   ScienceOn
7 Bass, D.W. and Haddara, M.R., 1987. On the modeling of the nonlinear damping moment for the rolling motion of a ship. Proc Int Assoc Sci Techn (IASTED), Paris, France, pp. 346-349.
8 Bass, D.W. and Haddara, M.R., 1988. Nonlinear models of ship roll damping. Int Shipbuilding Prog, 35(401), pp. 5-24.
9 Bulian, G., 2005. Nonlinear parametric rolling in regular waves – a general procedure for the analytical approximation of the GZ curve and its use in time domain simulations. Ocean Eng, 32, pp. 309-330.   DOI   ScienceOn
10 Cardo, A., 1982. On damping models in free and forced rolling motion. Ocean Eng, 9 (2), pp. 171-179.   DOI   ScienceOn
11 Caughey, T.K. and Dienes, J.K., 1961. Analysis of Nonlinear First-Order system with a White Noise Input. J Appl Phys 32(11), pp. 2476-2483.   DOI
12 Spencer, B.F. and Bergman, L.A., 1993. On the numerical solution of the Fokker-Planck equation for nonlinear stochastic systems. Nonlin Dyn, 4, pp. 357-372.   DOI
13 Paulling, J.R. and Rosenberg, R.M., 1959. On unstable ship motions resulting from nonlinear coupling. J Ship Res, 2,pp. 36-46.
14 Proppe, C., 2003. Exact stationary probability density functions for nonlinear systems under Poisson white noise excitation. Int J Nonlin Mech, 38, pp. 557-564.   DOI   ScienceOn
15 Sarpkaya, T. and Isaacson, M., 1981. Mechanics of Wave Forces on Offshore Structures. Van Nostrand Reinhold, New York.
16 Surendran, S. Lee, S.K. Reddy, J.V.R. and Lee, G., 2005. Nonlinear roll Dynamics of a Ro-Ro Ship in Waves. Ocean Eng, 32, pp. 1818-1828.   DOI   ScienceOn
17 Taylan, M., 2000. The effect of nonlinear damping and restoring in ship rolling. Ocean Eng, 27, pp. 921-932.   DOI   ScienceOn
18 Timco, G. W. and Johnston, M., 2004. Ice loads on the caisson structures in the Canadian Beaufort Sea. Cold Reg Sci Techn, 38, pp. 185-209.   DOI   ScienceOn
19 Vasta, M., 1995. Exact stationary solution for a class of nonlinear systems driven by a non-normal delta-correlated processes. Int J Nonlin Mech, 30(4), pp. 407-418.   DOI   ScienceOn
20 Ikeda, Y. Fujiwara, T. and Katayama, T., 1993. Roll damping of a sharp-cornered barge and roll control by a new-type stabilizer. Proc 3rd Int Offshore and Polar Engineering Conference, Singapore, 6-11 June 1993, pp. 634-539.
21 Koyluoglu, H.U. Nielsen, S.R.K. and Iwankiewicz, R., 1995. Response and reliability of Poisson-driven systems by path integration. ASCE, J Eng Mech, 121(1), pp. 117-130.   DOI   ScienceOn
22 Kwon, S.H. Kim, D.W. and Chung, J., 1993. Application of path integral solution to ship rolling motion. Proc 3rd Int Offshore and Polar Engineering Conference, Singapore, 6-11 June 1993, pp. 657-660.
23 Lin, H. and Yim, S.C.S., 1995. Chaotic roll motion and capsize of ships under periodic excitation with random noise. Appl Ocean Res, 17(3), pp. 185-204.   DOI   ScienceOn
24 Liqin, L. and Yougang, T., 2007. Stability of ships with water on deck in random beam waves. J Vibr Control, 13(3),pp.269-280.   DOI
25 Mamontov, E. and Naess, A., 2009. A'n analytical-numerical method for fast evaluation of probability densities for transient solutions of nonlinear Ito's stochastic differential equations. Int J Engrg Sci, 47(1), pp. 116-130.   DOI   ScienceOn
26 Mathisen, J.B. and Price, W.G., 1984. Estimation of ship roll damping coefficients. Trans,RINA, 127, pp. 295-307.
27 Chakrabarti, S., 2001. Empirical calculations of roll damping for ships and barges. Ocean Eng, 28(7), 915-932.   DOI   ScienceOn
28 Meyerhoff, W.K. and Schlachter, G., 1980. An approach for the determination of hull-girder loads in a seaway including hydrodynamic impacts. Ocean Eng, 7(2), pp. 305-326.   DOI   ScienceOn
29 Morison, J.R. O'Brien, M.P. Johnson, J.W. and Schaaf, S.A., 1950. The force exerted by surface waves on a pile. AIME, 189, pp.149-154.
30 Nayfeh, A.H. and Balachandran, B., 1995. Applied Nonlinear Dynamics. Wiley Series in Nonlinear Science, New York.
31 Dalzell, J.F., 1976. A note on the form of ship roll damping. J Ship Res 22, pp. 178-185.
32 Dimentberg, M.F., 1982. An Exact Solution to a Certain Nonlinear Random Vibration Problem. Int J Nonlin Mech, 17(4), pp. 231-236.   DOI   ScienceOn
33 Di Paola, M. and Pirrotta, A., 1999. Nonlinear systems under impulsive parametric input. Int J Nonlin Mech, 34, pp.843-851.   DOI   ScienceOn
34 Di Paola, M. and Santoro, R., 2008. Nonlinear systems under Poisson white noise handled by path integral solution. J Vib Control, 14(1-2), pp. 35-49.   DOI
35 El-Bassiouny, A.F., 2007. Nonlinear analysis for a ship with a general roll-damping model. Physica Scripta, 75, pp. 691-701.   DOI   ScienceOn
36 Froude W.F., 1863. Remarks on Mr. Scott Russell's paper on rolling. Trans Inst Naval Res, 4, pp. 232-275.
37 Gu, J.Y., 2006. Calculation of ship rolling probability using a new path integration method. J Ship Mech, 10(6), pp. 43-52.