• Title/Summary/Keyword: Random algorithm

Search Result 1,827, Processing Time 0.021 seconds

An EM Algorithm-Based Approach for Imputation of Pixel Values in Color Image (색조영상에서 랜덤결측화소값 대체를 위한 EM 알고리즘 기반 기법)

  • Kim, Seung-Gu
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.2
    • /
    • pp.305-315
    • /
    • 2010
  • In this paper, a frequentistic approach to impute the values of R, G, B-components in random missing pixels of color image is provided. Under assumption that the given image is a realization of Gaussian Markov random field, its model is designed such that each neighbor pixel values for a given pixel follows (independently) the normal distribution with covariance matrix scaled by an evaluates of the similarity between two pixel values, so that the imputation is not to be affected by the neighbors with different color. An approximate EM-based algorithm maximizing the underlying likelihood is implemented to estimate the parameters and to impute the missing pixel values. Some experiments are presented to show its effectiveness through performance comparison with a popular interpolation method.

A Clustering Approach for Feature Selection in Microarray Data Classification Using Random Forest

  • Aydadenta, Husna;Adiwijaya, Adiwijaya
    • Journal of Information Processing Systems
    • /
    • v.14 no.5
    • /
    • pp.1167-1175
    • /
    • 2018
  • Microarray data plays an essential role in diagnosing and detecting cancer. Microarray analysis allows the examination of levels of gene expression in specific cell samples, where thousands of genes can be analyzed simultaneously. However, microarray data have very little sample data and high data dimensionality. Therefore, to classify microarray data, a dimensional reduction process is required. Dimensional reduction can eliminate redundancy of data; thus, features used in classification are features that only have a high correlation with their class. There are two types of dimensional reduction, namely feature selection and feature extraction. In this paper, we used k-means algorithm as the clustering approach for feature selection. The proposed approach can be used to categorize features that have the same characteristics in one cluster, so that redundancy in microarray data is removed. The result of clustering is ranked using the Relief algorithm such that the best scoring element for each cluster is obtained. All best elements of each cluster are selected and used as features in the classification process. Next, the Random Forest algorithm is used. Based on the simulation, the accuracy of the proposed approach for each dataset, namely Colon, Lung Cancer, and Prostate Tumor, achieved 85.87%, 98.9%, and 89% accuracy, respectively. The accuracy of the proposed approach is therefore higher than the approach using Random Forest without clustering.

Correlated variable importance for random forests (랜덤포레스트를 위한 상관예측변수 중요도)

  • Shin, Seung Beom;Cho, Hyung Jun
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.2
    • /
    • pp.177-190
    • /
    • 2021
  • Random forests is a popular method that improves the instability and accuracy of decision trees by ensembles. In contrast to increasing the accuracy, the ease of interpretation is sacrificed; hence, to compensate for this, variable importance is provided. The variable importance indicates which variable plays a role more importantly in constructing the random forests. However, when a predictor is correlated with other predictors, the variable importance of the existing importance algorithm may be distorted. The downward bias of correlated predictors may reduce the importance of truly important predictors. We propose a new algorithm remedying the downward bias of correlated predictors. The performance of the proposed algorithm is demonstrated by the simulated data and illustrated by the real data.

Ultra-Light-Weight Automotive Intrusion Detection System Using Random Sample Consensus (랜덤 샘플 합의를 사용한 초경량 차량용 침입 탐지 시스템)

  • Jonggwon Kim;Hyungchul Im;Joosock Lee;Seongsoo Lee
    • Journal of IKEEE
    • /
    • v.28 no.3
    • /
    • pp.412-418
    • /
    • 2024
  • This paper proposes an effective method for detecting hacking attacks in automotive CAN bus using the RANSAC (Random Sample Consensus) algorithm. Conventional deep learning-based detection techniques are difficult to be applied to resource-constrained environments such as vehicles. In this paper, the attack detection performance in vehicular CAN communication has been improved by utilizing the lightweight nature and efficiency of the RANSAC algorithm. The RANSAC algorithm can perform effective detection with minimal computational resources, providing a practical hacking detection solution for vehicles.

A Bayesian Sampling Algorithm for Evolving Random Hypergraph Models Representing Higher-Order Correlations (고차상관관계를 표현하는 랜덤 하이퍼그래프 모델 진화를 위한 베이지안 샘플링 알고리즘)

  • Lee, Si-Eun;Lee, In-Hee;Zhang, Byoung-Tak
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.3
    • /
    • pp.208-216
    • /
    • 2009
  • A number of estimation of distribution algorithms have been proposed that do not use explicitly crossover and mutation of traditional genetic algorithms, but estimate the distribution of population for more efficient search. But because it is not easy to discover higher-order correlations of variables, lower-order correlations are estimated most cases under various constraints. In this paper, we propose a new estimation of distribution algorithm that represents higher-order correlations of the data and finds global optimum more efficiently. The proposed algorithm represents the higher-order correlations among variables by building random hypergraph model composed of hyperedges consisting of variables which are expected to be correlated, and generates the next population by Bayesian sampling algorithm Experimental results show that the proposed algorithm can find global optimum and outperforms the simple genetic algorithm and BOA(Bayesian Optimization Algorithm) on decomposable functions with deceptive building blocks.

A Generalized Subtractive Algorithm for Subset Sum Problem (부분집합 합 문제의 일반화된 감산 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.2
    • /
    • pp.9-14
    • /
    • 2022
  • This paper presents a subset sum problem (SSP) algorithm which takes the time complexity of O(nlogn). The SSP can be classified into either super-increasing sequence or random sequence depending on the element of Set S. Additive algorithm that runs in O(nlogn) has already been proposed to and utilized for the super-increasing sequence SSP, but exhaustive Brute-Force method with time complexity of O(n2n) remains as the only viable algorithm for the random sequence SSP, which is thus considered NP-complete. The proposed subtractive algorithm basically selects a subset S comprised of values lower than target value t, then sets the subset sum less the target value as the Residual r, only to remove from S the maximum value among those lower than t. When tested on various super-increasing and random sequence SSPs, the algorithm has obtained optimal solutions running less than the cardinality of S. It can therefore be used as a general algorithm for the SSP.

GENERAL NONLINEAR RANDOM SET-VALUED VARIATIONAL INCLUSION PROBLEMS WITH RANDOM FUZZY MAPPINGS IN BANACH SPACES

  • Balooee, Javad
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.243-267
    • /
    • 2013
  • This paper is dedicated to study a new class of general nonlinear random A-maximal $m$-relaxed ${\eta}$-accretive (so called (A, ${\eta}$)-accretive [49]) equations with random relaxed cocoercive mappings and random fuzzy mappings in $q$-uniformly smooth Banach spaces. By utilizing the resolvent operator technique for A-maximal $m$-relaxed ${\eta}$-accretive mappings due to Lan et al. and Chang's lemma [13], some new iterative algorithms with mixed errors for finding the approximate solutions of the aforesaid class of nonlinear random equations are constructed. The convergence analysis of the proposed iterative algorithms under some suitable conditions are also studied.

RANDOM GENERALIZED SET-VALUED COMPLEMENTARITY PROBLEMS

  • Lee, Byung-Soo;Huang, Nan-Jing
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.1-12
    • /
    • 1997
  • Complementaity problem theory developed by Lemke [10], Cottle and Dantzig [8] and others in the early 1960s and thereafter, has numerous applications in diverse fields of mathematical and engineering sciences. And it is closely related to variational inquality theory and fixed point theory. Recently, fixed point methods for the solving of nonlinear complementarity problems were considered by Noor et al. [11, 12]. Also complementarity problems related to variational inequality problems were investigated by Chang [1], Cottle [7] and others.

  • PDF

Fault Attack on a Point Blinding Countermeasure of Pairing Algorithms

  • Park, Jea-Hoon;Sohn, Gyo-Yong;Moon, Sang-Jae
    • ETRI Journal
    • /
    • v.33 no.6
    • /
    • pp.989-992
    • /
    • 2011
  • Recently, Page and Vercauteren proposed a fault attack on pairing algorithms and two countermeasures against such an attack. The countermeasure uses either a random scalar or a random point to blind the input points. To defeat the countermeasure using a random point, we utilize the point addition formula on an elliptic curve. As a result, we successfully defeat the countermeasure using a random point.

BCDR algorithm for network estimation based on pseudo-likelihood with parallelization using GPU (유사가능도 기반의 네트워크 추정 모형에 대한 GPU 병렬화 BCDR 알고리즘)

  • Kim, Byungsoo;Yu, Donghyeon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.2
    • /
    • pp.381-394
    • /
    • 2016
  • Graphical model represents conditional dependencies between variables as a graph with nodes and edges. It is widely used in various fields including physics, economics, and biology to describe complex association. Conditional dependencies can be estimated from a inverse covariance matrix, where zero off-diagonal elements denote conditional independence of corresponding variables. This paper proposes a efficient BCDR (block coordinate descent with random permutation) algorithm using graphics processing units and random permutation for the CONCORD (convex correlation selection method) based on the BCD (block coordinate descent) algorithm, which estimates a inverse covariance matrix based on pseudo-likelihood. We conduct numerical studies for two network structures to demonstrate the efficiency of the proposed algorithm for the CONCORD in terms of computation times.