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Recently, Page and Vercauteren proposed a fault attack on 
pairing algorithms and two countermeasures against such an 
attack. The countermeasure uses either a random scalar or a 
random point to blind the input points. To defeat the 
countermeasure using a random point, we utilize the point 
addition formula on an elliptic curve. As a result, we 
successfully defeat the countermeasure using a random point. 

Keywords: Fault attack, pairing algorithm, countermeasure, 
side-channel attack, elliptic curve. 

I. Introduction 

Page and Vercauteren first proposed a fault attack on pairing 
algorithms and two countermeasures against such an attack [1]. 
After the introduction of the fault attack, although the attack 
method and countermeasures have since been improved, their 
countermeasures have been referred to as secure 
countermeasures [2]-[4]. 

In [10], Ghosh and others exposed the weaknesses of the 
countermeasures of Page and Vercauteren. However, due to the 
fact that Ghosh and others did not consider the bilinearity 
property of pairing, their attack is infeasible. 

This letter shows that the fault attack by Page and 
Vercauteren can be applied to the countermeasure that blinds 
the input point using the addition of a random point. The 
countermeasure does not modify the point addition formula but 
changes the value of the input point to an arbitrary and 
unknown value. To apply the fault attack on the 
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countermeasure, we propose a utilization of the addition 
formula between the input point and a random point instead of 
the blinded input point. Using the roots of the equations 
deduced by the utilization, we successfully defeat the 
countermeasure. 

II. Introduction to Tate Pairing 

We briefly describe an algorithm of Tate pairing on an 
elliptic curve. Let E be an elliptic curve over a finite field Fq, 
and let O be the point at infinity. Let l be a large prime factor of 
#E(Fq), and let k be the smallest positive integer such that     
l |(qk–1). Let E(Fq)[l] be the set of l-torsion points in E(Fq). The 
Tate pairing then becomes the map 

* *: ( )[ ] ( )[ ] / ( ) ,k k k
l

l q q q qe E F l E F l F F× →  

given by ,( , ) ( ).l l P Qe P Q f D=  Here, fl, P is a rational function 
on E whose divisor is equivalent to l(P)–l(O), that is,     
div(fl, P)=l(P)–([l]P)–(l–1)O, and DQ is a divisor of degree 0 
equivalent to (Q)–(O). Both div(fl, P) and DQ have disjoint 
supports. The Tate pairing is well defined and satisfies the 
bilinearity el(P, tQ)=el(tP, Q)=el(P, Q)t for any integer t ≠ 0, 
and non-degenerate, that is, there exists a ( )[ ]kqQ E F l∈  
such that *( , ) 1 ( ) .k

l
l qe P Q F≠ ∈  The output of the Tate pairing 

is not unique but is determined up to an element in the quotient 
group * *( ) / ( ) .k k

l
q qF F  To produce a unique value, Barreto and 

others [8] proved that the reduced Tate pairing can be defined 
as 

1
*

,( , ) ( ) ,
k

k

q
l

l l P l qe P Q f Q Fμ
−

= ∈ ⊂  

where lμ  is the group of l-th root of unity of kqF . The 
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computation of the (qk–1)/l-th power is referred to as a final 
exponentiation. 

In this work, we will consider the pairing algorithm on the 
supersingular elliptic curve in characteristic 3, that is, q=3m 
with gcd(m, 6)=1. Let E be a supersingular elliptic curve  
over 3mF : 

2 3: ,E y x x b= − + with { 1,1}.b ∈ −  

Let 3
3[ ] / ( )qqF F bρ ρ ρ= − −  and 6 3

2[ ] / ( 1).q qF F σ σ= +  The 
distortion map )()(: 6qq FEFE →φ  is then defined by 

( , ) ( , ),x y x yϕ ρ σ= −  where 2 1σ = −  for 3, qFσ ρ ∈  
and 3 bρ ρ= +  for 6, .qFσ ρ ∈  The modified Tate pairing 
is then defined as ( , ) ( ( ))m Pe P Q f Qϕ= [5]. Several 
improvements have been proposed [5]-[8]. Algorithm 1 is the 
Duursma-Lee method for hyperelliptic curves in characteristic 
3. 

 
Algorithm 1. Duursma-Lee algorithm. 

Input: point P = (xP, yP), point Q = (xQ, yQ) 

Output: 6
*( , ) ( ( ))m P l qe P Q f Q Fϕ μ= ∈ ⊂  

1  1f ←  

2  for i = 1 to m do 

3     3 3,P P P Px x y y← ←  

4     P Qx x bμ ← + +  

5     2
P Qy yλ σ μ← − −  

6     2g λ μρ ρ← − −  

7     f f g← ⋅  

8     1/3 1/3,Q Q Q Qx x y y← ←  

9  return 
3 1qf −  

 

III. Fault Attack and Countermeasures by Page and 
Vercauteren 

In 2006, Page and Vercauteren initially proposed a fault 
attack on pairing algorithms [1]. They assumed a corruption of 
the loop bound in the ‘for’ procedure of the pairing algorithms. 
If an attacker modified the loop bound m to m+1 of algorithm 1, 
instead of producing a product of polynomials of the form 

13 3 2 2

1

( , ) ( )
i m i

m

m P Q i i
i

e P Q y y σ μ μ ρ ρ
− +

=

= − ⋅ − − −∏    (1) 

with 
13 3i m i

i P Qx x bμ
− +

= + + , algorithm 1 produces 

1
1

3 3 2 2
1

1

( , ) ( )
i m i

m

m P Q i i
i

e P Q y y σ μ μ ρ ρ
− +

+

+
=

= − ⋅ − − −∏    (2) 

for the loop bound m+1. If the attacker uses gi to denote the i-th 

factor of a product produced by algorithm 1, by dividing (2) by  
(1), he obtains a single factor 

13 2 21
1 1 1

( , )
( , )

mm
m P Q m m

m

e P Q
g y y

e P Q
σ μ μ ρ ρ

++
+ + += = − ⋅ − − − (3) 

after reversing the final powering. Because the attacker knows  
that 3m

z z=  for all elements z∈Fq, he can extract xP or yP, 
given that he knows xQ and yQ, and hence reconstruct the secret 
point. 

As mentioned above, an attack on the pairing algorithms is 
only successful when the adversary has knowledge of one 
input point. Therefore, it is natural to utilize point blinding 
techniques to construct a defense mechanism. Page and 
Vercauteren also proposed two countermeasures using a point 
blinding method: 

New Point Blinding Techniques. 

( , ) ( , ) ( , ),ab
m m me aP bQ e P Q e P Q= =  

where a and b are random numbers such that a·b ≡ 1 (mod l). 
Altering Traditional Point Blinding. 

1

1

( , ) ( , )

( , ) ( , ) ( , ) ( , ),
m m

m m m m

e P Q R e P R

e P Q e P R e P R e P Q

−

−

+ ⋅

= ⋅ ⋅ =
    

(4)
 

where R is a random point. 
The two countermeasures above utilize the bilinearity of 

pairing algorithms and involve random factors. Random 
factors affect the intermediate computation of pairing 
algorithms, but these are eliminated at the end of the algorithm. 

IV. Weakness of Previous Countermeasure 

The countermeasure based on altering the traditional point 
blinding is vulnerable to the fault attack by Page and 
Vercauteren. Given the secret point P=(xP, yP), the random 
point R=(xR, yR), and the public point Q=(xQ, yQ), Q can be 
chosen by an attacker and R is updated in every execution. We 
denote S=em(P, R) –1, Q+R=T=(xT, yT). Even if algorithm 1 
adopts the countermeasure using T instead of Q as described in 
(4), the attacker still obtains a single (m+1)th factor of a 
product. Algorithm 1 is executed without a corruption of the 
loop bound m, resulting in the correct output em(P, Q). 
Subsequently, the attacker executes algorithm 1 after the 
modification of the loop bound m to m+1. The attacker can 
deduce a single (m+1)th factor of a product by 

3
3

1
11 1

1
ˆ( , )( , ) ˆ .

( , ) ( , )

q
qmm m
m

m m

e P T S ge P T S
g

e P Q e P Q

−
−+ +

+
⋅ ⋅⋅

= =  

The final powering is then reversed by the method in [1]: 



ETRI Journal, Volume 33, Number 6, December 2011 Jea Hoon Park et al.   991 

13 2 2
1 1 1ˆ ˆ ˆ ,

m

m P T m mg y y σ μ μ ρ ρ
+

+ + += − ⋅ − − −      (5) 

where 
13

1ˆ
m

m P Tx x bμ
+

+ = + + . Note that the value of 1ˆmg +  
can be extracted from the ratio of the pairings without regard to 
the updating method of the random point R. 61ˆm qg F+ ∈ is 
denoted by 

2
1 0 1 2ˆ ,mg D D Dσ ρ ρ+ = − − − −  

where D0, D1, and D2 are in Fq. However, the attacker cannot 
extract xP or yP from 1ˆmg +  because xT and yT are unknown. 

To extract the secret point P, we utilize the point addition 
formula on an elliptic curve instead of the blinded input point T. 
In (5), we do not know the coordinates of T, xT and yT, but we 
know the explicit formula for the addition of two points Q and 
R on a curve defined over Fq. If Q ≠ R, then Q+R=T=(xT, yT), 
where 

2 3,T Q R T Q Rx x x y y yλ λ= − − = + −  

with λ=(yQ–yR)/(xQ–xR). Thus, after substituting the addition 
formula for xT and yT in (5), we can obtain four equations of the 
unknown values of xP, yP, xR, and yR as follows: 

3 3
0( ) ,P Q Ry y y Dλ⋅ + − =            (6) 

3 2
2( ) ,P Q Rx x x b Dλ+ − − + =         (7) 

2 3 0,P P Py x x b− + − =  

2 3 0.R R Ry x x b− + − =  

We easily solve the above nonlinear equations to obtain the 
secret point P. In the case of Q=R, we use the doubling 
formula instead of xT and yT in (5). 

Our approach to solve the equations is as follows. 
Eliminating the variables yP and yR in (6) and (7) using two 
elliptic curve equations, we obtain two polynomials in    
Fq[xP, xR]. Denote f(xP, xR) and g(xP, xR), respectively. To find 
the coordinates of point P or R, we use the resultant method 
which gives their common roots [9]. At this point, we consider 
that f and g are defined as polynomials in xP with the 
coefficients in Fq[xR]. The resultant of f and g, ( , ),

PxRes f g  
gives a polynomial in xR whose roots are the xR coordinates of 
the intersection of f and g. The degree of ( , )

PxRes f g  is 144.  
In practice, we can reduce the complexity, thereby using 
simplified f and g, 3( , )P Rf x x  and 3( , ).P Rg x x  In this case, 
because the degree of the coefficients of f and g are at most 4 
and 12, respectively, 3 ( , )

PxRes f g  is of degree 48. It can be 
factored into a product of 13 linear factors, a linear factor with a 

multiplicity of 24, and an irreducible factor over Fq. Given that 
the leading coefficients of f and g are excepted for candidates of 
the roots in 3 ( , ),

PxRes f g  we have at most 13 possible 
solutions for xR and 13×2 possible points for R (= (xR yR)). Thus, 
from (6) and (7), we can extract the secret point P. Similarly, 
we can also find the secret point P using same method when f 
and g are defined as polynomials in xR with coefficients in 
Fq[xP]. 

V. Simulation Result 

We simulated our approach in C++ using Shoup’s NTL 
library on a Pentium 2.13-GHz computer with less than 2 GB 
of memory. The NTL helps perform the arithmetic of finite 
fields and polynomials using an FFT algorithm. 

Let the elliptic curve E: y2=x3–x+1 over the finite field Fq, 
where q=3m and m=97. The number of points of E is 
#E(Fq)=19088056323407827075424725586944833310200239047 
(154 bit). 
The secret point P is 
P=([2DE85A5A2B17D9D41444ED50A80D749BB266B06], 

[3059A7F8FA2647277429A5006EFEE588ABB2AB8]). 
The public point Q is 
Q=([28E51C31B47DD808962E6CA4606BDD736E78374], 

[8E62592D5E1E77D55C770D4DB59D51D32F0531]). 
The random point R is 
R=([1EF95B1863C99EC17B5686F5A1B5F9AE7979C33], 

[1FACE5EBA638EC93B2D41123D1112B539CD386C]). 
We compute the ratio of pairings by 

3 11
1

2

1212A4AD49B5133B146709F6014C33B93604DCF
20DE9C17129CCCFE67275A5B29D3D5949CDF69

15AA5BD97EA10974AF4CC0887EA1C6BA62B303
1A054D26768204C591B098D7F4fCCD9C60445B1

( , ) ˆ
( , )

[ ]
[ ]

[ ]
[ ]

qm
m

m

e P Q R S g
e P Q

 ρ

ρ

−+
+

+ ⋅
=

=
+

+
+

2

2AF83C1C627F3DABFBDC26418DD1736BEA98B40

2CD8dA6A436C7FBAD71F30DFBA05BB1C3865545

[ ]

[ ] .

 
σ

σρ

σρ

+

+

 

From the root finding method, we can obtain 1ˆmg +  on the 
basis of {1, ρ, ρ2, σ, σρ, σρ2}: 

2

ˆ
1

[2D2AAC64217DF287DC09F84E4BA3D7B92BBD36D]

[29407E4825A43399A1AD241664BB49EDD653125]

[838A295514228CFFFF3F2C0F2A37110D46CB22]

g
m

.
ρ ρ

σ

+
−

−

=

− −

Thus, after substituting the addition formula for blinded values, 
we can obtain four equations as follows: 
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3 3

3 2

2 3

2 3

838 A 295514228CFFFF3F 2 C 0 F 2 A 37110 D 46 CB 22

29407 E 4825 A 43399 A1AD 241664 BB 49 EDD 653125

( )

[ ],

( )

[ ],

0,

0.

P Q R

P Q R

P P P

R R R

y y y

x x x b

y x x b

y x x b

λ

λ

⎧ ⋅ + −
⎪

=⎪
⎪

+ − − +⎪
⎨

=⎪
⎪ − + − =⎪
⎪ − + − =⎩

 

Subsequently, as stated above, we can calculate 3( , )P Rf x x  
and 3( , )P Rg x x . The result of 3 ( , )

PxRes f g  is  

3 1 2 13

11 10 24
10 1 0

( , ) ( ) ( ) ( )

( ) ( ) .
P

R R Rx

R R R R

Res f g x u x u x u

x v x v x v x w

= − × − × × −

× + + + + × −
 

From the above equation, 13 linear factors become the 
candidates of xR: 

u1=[3506D9218BB15381D675A0b31F07761E3496FD6], 
u2= [9A39EAF6809BE65942AE8E70688A97A7EF69BF], 
u3 =[2290417E9E6718309601C96D2BB96D2E6F67249], 
u4 =[1B5085342E90A3F61A1E165F61FE6B2FB49E63B], 
u5 = [2F0D1005D82FE558F1C97408C8FB9CF5FF2C43E], 
u6 = [2A6C6483F6AA7D0CA6ABA0923DA74CE6FB3A0A2], 
u7 =[181DC05DB6280AF124F70FA776132CBB2BED707], 
u8 = [48076E348847CD077957F08189A99DDB87B4F], 
u9 = [117F65862EB5EBA938422CF16E3BB38B7E42397], 
u10 = [1408AFEDD7C79945DC7AB7A8A692C49CF76FA7E], 
u11 = [40173942798BCC002D29762B50C5200EA921E3], 
u12 = [1EF95B1863C99EC17B5686F5A1B5F9AE7979C33], 
u13 = [308CB2D8F93488C3B8F26EDCCD25F0513D80FC4]. 

We can extract xP or yP from (5), given that we know the public 
point Q and the 26 candidates of R, and hence reconstruct the 
secret point P. 

VI. Conclusion 

This letter showed that the previous countermeasure is not 
secure against the fault attack by Page and Vercauteren. We 
utilized the addition formula on an elliptic curve instead of a 
blinded point to obtain enough nonlinear equations for finding 
the secret point. Thus, from the pairing algorithm adopting the 
countermeasure using a random point, we successfully 
extracted the secret point. This study provides a warning 
regarding the usage of the countermeasure with a random point, 
and we thus recommend the countermeasure with a random 
scalar among the two previous countermeasures. 
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