• Title/Summary/Keyword: Random Analysis

Search Result 4,630, Processing Time 0.03 seconds

Identification of Korean Native Goat Meat using DNA Analysis (DNA분석기법을 이용한 한국재래산양육의 판별)

  • Sang, B.C.;Lee, S.H.;Ryoo, S.H.;Seo, K.W.;Han, S.W.;Kim, S.K.
    • Korean Journal of Agricultural Science
    • /
    • v.26 no.2
    • /
    • pp.33-38
    • /
    • 1999
  • This study was carried out to analyze the genetic polymorphisms of genomic DNA of blood and meat for conservation of the genetic resources and genetic improvement of Korean Native goat. The genetic identification between Korean Native goat and imported goat was examined using RAPD(random amplified polymorphisms DNAs) analysis with 30 Korean Native goat, 10 hybrid, 10 imported goat. 10 Korean native goat meat and 10 imported goat meat. The results obtained from this study were summarized as follows: 1. Genomic DNA from Korean native goat, hybrid and imported goat could be obtained above about 23kb size using 0.5% agarose gel electrophoresis and the ratio of optical density at 260nm to that at 280nm was between 1.7 and 2.0 using UV spectrophtometer instrument. 2. In the results of the gene identification between Korean Native goat and hybrid, and imported goat using RAPD methods with random primer of 110 kinds, only Korean native goat showed a specific band at about 369bp using a random primer OPO-19 (5'-CAA ACG TCG G-3'), but imported goat and hybrid not showed. 3. Also, in the results of the gene identification between Korean Native goat meat and imported goat meat using RAPD methods with random primer, Korean native goat only showed a specific band at about 369bp using a random primer No. 19(5'-CAA ACG TCG G-3'), but imported goat not showed.

  • PDF

Sensitivity and Reliability Analysis of Elate (판 구조물의 감도해석 및 신뢰성해석)

  • 김지호;양영순
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.10a
    • /
    • pp.57-62
    • /
    • 1991
  • For the purpose of developing the method for efficiently calculating the design sensitivity and the reliability for the complicated structure such as ship structure, the probabilistic finite element method is introduced to formulate the deterministic design sensitivity analysis method and incorporated with the second moment reliability methods such as MVFOSM, AFOSM and SORM. Also, the probabilistic design sensitivity analysis needed in the reliability-based design is performed. The reliability analysis is carried out for the initial yielding failure, in which the derivative derived in the deterministic desin sensitivity is used. The present PFEM-based reliability method shows good agreement with Monte Carlo method in terms with the variance of response and the associated probability of failure even at the first or first few iteration steps. The probabilistic design sensitivity analysis evaluates explicitly the contribution of each random variable to probability of failure. Further, the reliability index variation can be easily predicted by the variation of the mean and the variance of the random variables.

  • PDF

Direct implementation of stochastic linearization for SDOF systems with general hysteresis

  • Dobson, S.;Noori, M.;Hou, Z.;Dimentberg, M.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.5
    • /
    • pp.473-484
    • /
    • 1998
  • The first and second moments of response variables for SDOF systems with hysteretic nonlinearity are obtained by a direct linearization procedure. This adaptation in the implementation of well-known statistical linearization methods, provides concise, model-independent linearization coefficients that are well-suited for numerical solution. The method may be applied to systems which incorporate any hysteresis model governed by a differential constitutive equation, and may be used for zero or non-zero mean random vibration. The implementation eliminates the effort of analytically deriving specific linearization coefficients for new hysteresis models. In doing so, the procedure of stochastic analysis is made independent from the task of physical modeling of hysteretic systems. In this study, systems with three different hysteresis models are analyzed under various zero and non-zero mean Gaussian White noise inputs. Results are shown to be in agreement with previous linearization studies and Monte Carlo Simulation.

Reliability analysis of latticed steel towers against wind induced displacement

  • Khan, M.A.;Siddiqui, N.A.;Abbas, H.
    • Steel and Composite Structures
    • /
    • v.4 no.1
    • /
    • pp.9-21
    • /
    • 2004
  • The present study aims at the reliability analysis of steel towers against the limit state of deflection. For this purpose tip deflection of the tower has been obtained after carrying out the dynamic analysis of the tower using modal method. This tip deflection is employed for subsequent reliability analysis. A limit state function based on serviceability criterion of deflection is derived in terms of random variables. A complete procedure of reliability computation is then presented. To study the influence of various random variables on tower reliability, sensitivity analysis has been carried out. Design points, important for probabilistic design of towers, are also located on the failure surface. Some parametric studies have also been included to obtain the results of academic and field interest.

A Comparison of Efficiency Estimation Methods via Monte Carlo Analysis (몬테카를로 분석에 의한 효율성 추정방법의 비교)

  • 최태성;김성호
    • Korean Management Science Review
    • /
    • v.19 no.1
    • /
    • pp.117-128
    • /
    • 2002
  • In this Paper we investigate the performance of the five efficiency estimation methods which include the stochastic frontier model estimated by maximum likelihood (SFML), the stochastic frontier model estimated by corrected ordinary least squares (SFCOLS), the data envelopment analysis (DIA) model, the combined estimation of SFML and DEA (SFML + DEA), and the combined estimation of SFCOLS arid DIA (SFCOLS+ DEA) using Monte Carlo analysis. The results include: 1) SFML provides most accurate efficiency estimates for the sample sloe 150 or over,2) SFML+DEAor SFCOLS + DIA Perform better for the cases with sample sloe 25, 50, and low random errors, 3) SFCOLS performs better for the close with sample sloe 25, 50, and very high random errors.

A Study on Optimal Spot-weld Layout Design of the Shock Tower Structure Considering Fatigue Life under Random Vibration Load (불규칙 진동하중을 받는 쇽 타워의 피로수명을 고려한 점용접 위치 최적설계)

  • Lee, Yong-Hoon;Lee, Seung-Yoon;Bae, Bok-Soo;Yim, Hong-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.538-543
    • /
    • 2011
  • In this paper, optimal spot weld layout design of the shock tower structure is performed for increasing fatigue life of spot weld and fatigue life of shock tower simultaneously. To predict the fatigue life, linear static analysis is conducted then fatigue analysis is performed by applying random vibration load. To optimize the spot weld layout, design variables that have an effect on spot weld fatigue life are selected. Based on the DOE table, spot weld fatigue analysis is conducted. Finally, response surface model is made from fatigue analysis results and optimized spot weld layout model which increases fatigue life of sport weld and fatigue life of shock tower is determined.

  • PDF

A Study on Dynamic Response Analysis of High Structure under Earthquake Load (지진하중을 받는 고층건물의 동적응답 해석에 관한 연구)

  • 배동명;신창혁
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.4
    • /
    • pp.337-346
    • /
    • 2000
  • Earthquake is a natural disaster accompanied by damage of human and properties caused by the ground motion, crustal movements, faults as well as tidal wave. The earthquake is known to occur mostly in earthquake-prone areas and the Korean Peninsula is known to be relatively safe in terms of geological characteristics. In order to withstand on severe environmental dynamic random load such as an earthquake, the large structure need to be designed to withstand the anticipated seismic tremor. The seismetic design is essential for building structures, bridges, and large structures which is handles explosive gases. Thus, the necessity of earthquake resistant analysis for large structure is growing and the capability of dynamic analysis should be obtained. In this thesis, dynamic responses of a high building(height 60m, width 18) which subjected to random earthquake load are presented which responses are derived using dynamic analysis methods such as response spectrum analysis, mode superposition and direct integration. Each results are also compared to review the merit of each methods.

  • PDF

Evaluation of chassis component reliability considering variation of fatigue data (피로 자료 분산을 고려한 자동차 부품의 신뢰도 해석)

  • Nam G.W;Lee B.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.690-693
    • /
    • 2005
  • In this paper, probabilistic distribution of fatigue life of chassis component is determined statistically by applying the design of experiments and the Pearson system. To construct $p-\varepsilon-N$ curve, the case that fatigue data are random variables is attempted. Probabilistic density function(p.d.f) for fatigue life is obtained by design of experiment and using this p.d.f fatigue reliability about any aimed fatigue life can be calculated. Lower control arm and rear torsion bar of chassis component are selected as examples for analysis. Component load histories, which are obtained by multi-body dynamic simulation for Belsian load history, are used. Finite element analysis are performed using commercial software MSC Nastran and fatigue analysis are performed using FE Fatigue. When strain-life curve itself is random variable, probability density function of fatigue life has very little difference from log-normal distribution. And the case of fatigue data are random variables, probability density functions are approximated to Beta distribution. Each p.d.f is verified by Monte-Carlo simulation.

  • PDF

Structural Vibration Analysis of Electronic Equipment for Satellite under Launch Environments (발사환경에 대한 위성 전장품의 구조진동 해석)

  • 정일호;박태원;한상원;서종휘;김성훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.120-128
    • /
    • 2004
  • The impulse between launch vehicle and atmosphere can generate a lot of noise and vibration during the process of launching a satellite. Structurally, the electronic equipment of a satellite consists of an aluminum case containing PCB. Each PCB has resistors and IC. Noise and vibration of the wide frequency band are transferred to the inside of fairing, subsequently creating vibration of the electronic equipment of the satellite. In this situation, random vibration can cause malfunctioning of the electronic equipment of the device. Furthermore, when the frequency of random vibration meets with natural frequency of PCB, fatigue fracture may occur in the part of solder joint. The launching environment, thus, needs to be carefully considered when designing the electronic equipment of a satellite. In general, the safety of the electronic equipment is supposed to be related to the natural frequency, shapes of mode and dynamic deflection of PCB in the electronic equipment. Structural vibration analysis of PCB and its electronic components can be performed using either FEM or vibration test. In this study, the natural frequency and dynamic deflection of PCB are measured by FEM, and the safety of the electronic components of PCB is evaluated according to the results. This study presents a unique method for finite element modeling and analysis of PCB and its electronic components. The results of FEA are verified by vibration test. The method proposed herein may be applicable to various designs ranging from the electronic equipments of a satellite to home electronics.

Jitter Analysis of CMOS Ring Oscillator Due to 1/f Noise of MOSFET (MOSFET의 1/f noise에 의한 CMOS Ring Oscillator의 Jitter 분석)

  • Park Se-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.8
    • /
    • pp.1713-1718
    • /
    • 2004
  • It has been known that 1/f noise of MOSFET is generated by the superposition of single random telelgraph signals (RTS). In this study, jitters caused by 1/f noise of MOSFET are analysed with RTS supplied to all of the nodes of the CMOS ring oscillator under investigation. Through the analysis of the variations of jitters and jitter ratios with varying values of the amplitude of RTS, it is found that the jitters and the jitter ratios are proportional to the amplitude of RTS. And the analysis of FFT of the outputs of the ring oscillator reveals that the jitters are closely related to the phase noise of the high order harmonics of the ring oscillator outputs.