• Title/Summary/Keyword: Railway bridge

Search Result 822, Processing Time 0.029 seconds

Analysis of Rail Stress on Diversity of Railway Bridge Sustem (고속철도 교량의 구조 시스템 변화를 고려한 교량상 장대레일의 응력 해석)

  • Kang, Jae-Yoon;Kim, Byung-Suk;Kwark, Jong-Won;Chin, Won-Jong
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3160-3165
    • /
    • 2011
  • The track and bridge interaction should be considered for the safety check of railway bridge design as the longitudinal forces transmitted to rail and bridge are changed by longitudinal stiffness of bridge system. The longitudinal stiffness of bridge structures is determined by the magnitude of the ballast resistance, the expansion length of superstructure, and longitudinal stiffness of substructure including pier and foundations. In this study, the main factors affect on the longitudinal rail forces are discussed and the computational parametric analysis of rail forces considering rail-bridge interactions. And the required range of stiffness of sub-structures and span length for the assurance of safety of CWR(continuous welded rail) track is suggested.

  • PDF

A study on the axial force and displacement characteristics of turnout on a bridge (분기기와 교량의 상호작용 특성에 관한 연구)

  • Yang, Shin-Chu;Kim, In-Jae;Kim, Eun
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1306-1311
    • /
    • 2006
  • Most of design parameters of Railway Structures are determined by the serviceability requirements, rather than the structural safety requirements. The serviceability requirements come from Ensuring of Running Safety and Ride Comfort of Train, Reduction of Track Maintenance Work Track-Bridge Interaction should be considered in the design of railway structures. In this study, a numerical method which precisely evaluate an axial force in rail and a rail expansion and contraction when turnout exist in succession on a CWR on a ballasted or on a ballastless track of bridge is developed. From the parameter studies using the developed method, additional stress of stock rail almost 25% is generated due to stock and lead rail interaction, even embankment not bridge. In case of ballasted track, additional stress of stock rail on bridge is very greater than on embankment, and therefore require detailed review in bridge design with turnout. Stresses of turnout rails on bridge are very sensitive according to the installed positions. In case of ballastless track, Stresses of turnout rails are similar as those of normal track

  • PDF

Passive Vibration Control of Steel-Concrete Composite High-Speed Railway Bridge Under Moving Train Loads (이동열차하중에 대한 강합성형 고속철도교의 수동형 진동제어)

  • 고현무
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.251-258
    • /
    • 1999
  • The vibration control of bridge is studied considering the vibration characteristics of the Korean-type high-speed railway bridge. Fast nonlinear analysis is adopted as time integration method and the bridge and the train are modeled by FEM and sequentially moving constant forces respectively. Additional damping mechanism is indispensable to the Korean-type high-speed railway bridge because resonance vibration is excited under the maximum design speed. The optimal position and capacity of the damper is studied through the parametric studies, Transient vibration of the bridge is effectively controlled by such additional dampers which means that dampers play a role as structural damping. And also the maximum response of the bridge is reduced. Therefore it is verified that the increase of expected service life and the improvement of serviceability can be obtained through dampers.

  • PDF

Lifetime Prediction of a P.S.C Rail Road Bridge (P.S.C 철도교량의 잔존수명 예측)

  • Yang Seung-Le
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.5
    • /
    • pp.439-443
    • /
    • 2005
  • The biggest challenge bridge agencies face is the maintenance of bridges, keeping them safe and serviceable, with limited funds. To maintain the bridges effectively, there is and urgent need to predict their remaining life from a system reliability viewpoint. In this paper, a model using lifetime functions to evaluate the overall system probability of survival of a rail road bridge is proposed. In this model, the rail load bridge is modeled as a system. Using the model, the lifetime of the rail road bridge is predicted.

Sturdy for the development of Bridge plate of SEPTA Sliver Line V (미국 전동차 Manual bridge plate 에 대한 고찰)

  • Choi, Se-Jung;Yeom, Gyung-An
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.451-457
    • /
    • 2008
  • The aim of the sturdy is for the development of Bridge plate installing on floor for SETPA Sliver line V. SEPTA train have pocket sliding door which is similar with domestic trains. typically In the USA railway market, Portable type and standing type bridge plate used, easily hiding the bridge plate in stowed position and convenience operation, Bridge plate installed on floor is designed. relative regulation Like CFR APTA, and EN, UIC is reviewed and compared.

  • PDF

Aerodynamic effects of subgrade-tunnel transition on high-speed railway by wind tunnel tests

  • Zhang, Jingyu;Zhang, Mingjin;Li, Yongle;Fang, Chen
    • Wind and Structures
    • /
    • v.28 no.4
    • /
    • pp.203-213
    • /
    • 2019
  • The topography and geomorphology are complex and changeable in western China, so the railway transition section is common. To investigate the aerodynamic effect of the subgrade-tunnel transition section, including a cutting-tunnel transition section, an embankment-tunnel transition section and two typical scenarios for rail infrastructures, is selected as research objects. In this paper, models of standard cutting, embankment and CRH2 high-speed train with the scale of 1:20 were established in wind tunnel tests. The wind speed profiles above the railway and the aerodynamic forces of the vehicles at different positions along the railway were measured by using Cobra probe and dynamometric balance respectively. The test results show: The influence range of cutting-tunnel transition section is larger than that of the embankment-tunnel transition section, and the maximum impact height exceeds 320mm (corresponding to 6.4m in full scale). The wind speed profile at the railway junction is greatly affected by the tunnel. Under the condition of the double track, the side force coefficient on the leeward side is negative. For embankment-tunnel transition section, the lift force coefficient of the vehicle is positive which is unsafe for operation when the vehicle is at the railway line junction.

Damage Potential of a Domestic Metropolitan Railway Bridge subjected to 2016 Gyeongju Earthquake (2016년 경주지진에 의한 국내 도시철도 교량의 잠재적 손상평가)

  • Lee, Do Hyung;Shim, Jae Yeob;Jeon, Jong-Su
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.461-472
    • /
    • 2016
  • Damage potential has been investigated for a domestic metropolitan railway bridge subjected to 2016 Gyeongju earthquake which has been reported as the strongest earthquake in Korea. For this purpose, nonlinear static pushover analyses for the bridge piers have been carried out to evaluate ductility capacities. Then, the capacities have been compared with those suggested by Railway Design Standards of Korea. This comparison shows that all piers possess enough safety margins. Nonlinear dynamic time-history analysis has also been conducted to estimate both displacement and shear force demands for the bridge subjected to ground motions recorded at stations in near of Gyeongju. Maximum demands reveal that response under the ground motions remains essentially in elastic. In addition, for a further assessment of the bridge under the Gyeongju earthquake, fragility analyses have been performed using those ground motions. The fragility results indicate that the recorded earthquakes do not significantly affect the damage exceedance probability of the bridge piers.

A Correlation Analysis on Earth Pressure and Subgrade Stiffness in Bridge Abutment Transition Zone (철도 교량접속부의 토압과 노반강도와의 상관관계)

  • Kim, Jin-Hwan;Cho, Kook-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.5
    • /
    • pp.647-655
    • /
    • 2016
  • The construction of high speed railways and improvement projects of for conventional railways require straight railway lines of railway, which leads to an increase of bridge and tunnel construction. Transition zones in railways means that the track support stiffness is variedvaries in over short ranges. Sspecial attention is required in theose transition zones since because instability of train running in train and irregularities of track irregularities are can frequently occurred. Typical transition zones are between bridges and earthworks and between tunnels and earthworks. On In a transition zone, a bridge abutment transition zone has many problems in with various causes. In this paper, fundamental problems of bridge abutment transition zones is are analyzed to enhance the understanding about of bridge abutment transition zones. Suggestions for improving problems in the transition zones are proposed.

Characteristics of Track and Train Behaviors on High-Speed Railway Bridge/Earthwork Transiton Zone (고속철도 교량/토공 접속부에서의 궤도 및 차량 거동 특성)

  • Lee, Il-Wha;Kang, Yun-Suk;Kim, Eun;Son, Ki-Jun;Park, Chan-Kyoung
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.129-134
    • /
    • 2003
  • It is very important to pay careful attention to construction of bridge/earthwork transition zone for high-speed railway. The transition zone of the railway is the section which roadbed stiffness is suddenly varied. Differences in stiffness have dynamic effects and these increase the forces in the track and the extent of deformation. An abrupt change of stiffness across two adjacent track portions cause irregular settlement of roadbed, track irregularity, lack of girder bending moment and reduction of lateral resistance. Especially on high-speed railway, track irregularity of transition zone cause sincere effect to track stability and train safety. And so continuous maintenance is needed. To verify this effect and to improve transiton zone capacity, In situ test, track irregularity and train acceleration test were performed on high-speed railway bridge/earthwork Transiton Zone.

  • PDF

Investigation of Traffic Safety Requirements for Railway Bridge (철도교량 동적안정성 확보를 위한 거동한계기준에 대한 분석)

  • Kim, Sung-Il;Jeong, Han-Uk;Lee, Doo-Jae;Mun, Je-U;Kim, Jong-Tae
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1416-1423
    • /
    • 2007
  • Dynamic instability of the railway bridge can cause track irregularities and be directly connected with unstable passenger comfort and derailment of the train. Europe and Japan had studied on this problem for a long time since 1960's, Results of those studies are reflected in recent Eurocode and the bridge design code of Japanese railway bridges. However, even though some traffic safety requirements were applied in Kyoung-bu highspeed railway by French engineers, we experienced many difficulties from insufficient information of criteria background and application procedures. In this paper, a investigation of recent traffic safety requirements of Europe and Japan for railway bridges will be introduced and application procedures for the estimation of dynamic performance will be proposed.

  • PDF