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Lifetime Prediction of a P.S.C Rail Road Bridge

Seung-Le Yang

Abstract

The biggest challenge bridge agencies face is the maintenance of bridges, keeping them safe and serviceable, with
limited funds. To maintain the bridges effectively, there is an urgent need to predict their remaining life from a system
reliability viewpoint. In this paper, a model using lifetime functions to evaluate the overall system probability of
survival of a rail road bridge is proposed. In this model, the rail load bridge is modeled as a system. Using the model,

the lifetime of the rail road bridge is predicted.
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1. Infroduction

The bridges are designed to serve the public. And no
matter how well these are designed, they are deteriorating
with time. One of the main concerns is whether the
reliability of the bridge remains above the required safety
level or not at the end of expected lifetime. To increase
the service life, it is necessary to properly maintain the
bridge, and the most effective maintenance strategy is
required because of limited funds.

In this paper, the program "LIFETIME", which was
developed using system reliability and lifetime functions,
is used to predict the remaining life of the rail road

bridge.

2. System Reliability and Lifetime Function

2.1 Structure Function and Reliability Function
Structure function [1] is a useful tool to describe the

state of a system with n components. Structure function
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defines the system state as a function of the component
state. In addition, it is assumed that both components and
the system can either be functioning or failed. The state

of component i, xi, is assumed as

X;

0 if component 7 has failed
1 if component 7is functioning )

fori=1,2, .., n

The n component system can be expressed as a system

state vector as following.

..... X, (2
Structure function, e(x), expresses the system state vec-
tor x to zero or one. The structure function a(x) for a

given system state vector is

0 if the system has failed
a(x) = 3)

1 if the systemis functioning
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Fig. 1. Sequential Reduction Procedure

As an example, the structure function is obtained for a
5-component system shown in Fig. 1. Also, Fig. 1 shows
the reduction steps. These reduction steps are also ex-
pressed as functions through Eq. (4) to Eq. (7).

The first reduction step is a parallel system between.

components 2 and 3. Using the first reduction, the sub-

system | is obtained and expressed as following.

2s1(x) =1-(1-x)1-x) @

The second reduction is a series system between com-

ponents 4 and 5. This is expressed as following.

?s2(X) = x, % )

The third reduction is also a series system between

subsystem 1 and component 1.

@sa(X) = x¢q (6)

Using the fourth reduction, the structure function of this

S-component system is obtained.

p(x) =1-{-x[1-0~x)A- )1~ xx%) @)

The structure function is deterministic. This assumption
may be unrealistic for certain types of components or
system. So, reliability functions [1] are necessary to model
the structures. x7 was defined to be the deterministic state
of component 7 Now, x/ is a random variable. The pro-

bability that component 7 is functioning is given by

Pi=P [x=1] ®)
Where

p; = Probability that component 7 is functioning

In order to obtain the reliability function for a 5-
component system shown in Fig. 1, the same procedure is
necessary. But the component reliability function, p;, is

used in each step instead of component state x.

2.2 lLifetime Function

There are several lifetime functions to describe the
evolution of the probability of failure. In this paper, sur-
vivor function is introduced and explained. The survivor
function can be applied to both discrete and continuous
lifetime.

The survivor function is the generalization of reliability
because the survivor function gives the reliability that a
component or system is functioning at one particular time.

The survivor function is expressed
S(H=PT=zf =20 )

It is assumed that when ¢<0,5) 1is one. The survivor

function has to satisfy three conditions. These are

) SO)=1
5 lms=0

3)  S(t) is non-increasing without any maintenance

Exponential distribution, Weibull distribution, Log-ogistic
distribution, and Exponential Power distribution are used as

survivor functions. These are shown in Table 1.
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Distribution Survivor function E E E E H K
Exponential ep(=¥) 61 G2 ) G4 G5 6
Weibull apl-(At)"]
Log-logistic O] ! Fig. 2. Cross Section of the Rail Road Bridge
Exponential- power exp(l —exp{At)”]

where

A = Failure rate
K = Shape factor
t = Time, =0
A= Scale factor

3. Data Collection

Each lifetime distribution has each its parameters (failure
rate, scale factor and shape factor), and these should be
obtained from data analysis to predict the failure pro-
bability of real bridges.

The data from Maunsell Ltd. [2] is used for bridge
components. In Maunsell’s report [2], the serviceable life
is defined to be the time taken for a significant defect
requiring attention to be recorded at an inspection. Ac-

cording to defect severity, four levels are classified.

* Severityl: no significant defects

* Severity2: minor defects of a non urgent nature

» Severity3: defects which shall be included for attention
within the next annual maintenance program

* Severity4: the defect is severe and urgent action is

needed

Data analysis was conducted for severity 3 and 4.
Weibull distribution was selected as best fit for each bridge
component and its parameters were summarized in the

report [2].

4. System Failure Probability with Time

The bridge has simple span and a length is 24.9 m. The
deck consists of 35 cm of reinforced concrete. The slab is

supported by six P.S.C concrete girders. The design load

is 1.22. The cross section of the rail road bridge is shown
in Fig. 2.

Due to nonlinearity in multi-girder bridge types, single
girder failure doesn't cause the bridge failure. If one girder
fails on bridge, the load redistribution takes place and the
bridge is capable to carry additional loads. The multi-girder
bridges are modeled as combination of series and parallel
systems in system reliability analysis. The following failure

modes are considered.

» System I: Any one girder failure or deck failure causes
the bridge failure.

¢ System II: Failure of any external girder or any two
adjacent internal girders or deck failure
cause the bridge failure.

¢ System IlI: Any two adjacent girder failures or deck
failure cause the bridge failure.

* System TV: Any three adjacent girder failures or deck

failure cause the bridge failure.

These failure models are shown in Fig. 3 for the rail road

bridge. With these failure modes, the reliability analysis is

performed.
‘Where
D = Deck failure
G1 and G6 = Exterior girder failure
G2, G3, G4, G5 = Interior girder failure

When the system failure probability was computed, it
is assumed that components are statistically independent.
This assumption makes the mathematics simpler. However,
this assumption cannot be applied to every system. The
correlation between the components in a system affects the
system failure probability. For a series system, an increase

in the correlation between the components decreases the
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Fig. 4. Flowchart of the Program

system failure probability. Whereas, the increased cot-
relation between the components of a parallel system
increases the system failure probability. The calculation of
a system failure probability is very difficult and appro-
ximation is almost always necessary and, upper and lower
bounds of the corresponding probability are useful [3].

The program LIFETIME was developed by using life-
time functions and system reliability concepts. The flow
chart of the program is shown in Fig. 4.

Using the program LIFETIME [4-6], the probability of
system failure for each failure mode is predicted and shown
in Fig. 5, Fig. 6, Fig. 7, and Fig. 8. That of all systems

are shown in Fig. 9.
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Fig. 5. Failure Probability of System I
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Fig. 6. Failure Probability of System II
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Fig. 8. Failure Probability of System IV
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5. Conclusion

The main purpose of this paper was to predict the
time-dependent component and system failure probability.
Lifetime functions and system reliability models were used.
Finally, the rail road bridge was used to predict the

time-dependent system failure.

(1) Using structure function and reliability function, the
system can be expressed as a combination of series-
parallel components.

(2) The program “LIFETIME” can be applied to any struc-
tural system which can be expressed as a combination
of series-parallel components, to predict the system
failure probability. The program “LIFETIME” can be
applied to a bridge network.

(3) Because the program “LIFETIME” gives the time
dependent system failure probability, the result can be
used for making the plan of the repair or maintenance

with a target system failure probability.
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