• Title/Summary/Keyword: RT-PCR

Search Result 4,208, Processing Time 0.038 seconds

Therapeutic Effects of Ephedra sinica Stapf Herb-Acupuncture on Adjuvant-induced Polyarthritis of Rat (흰쥐의 Adjuvant 유발 다발성 관절염에 대한 마황 약침의 치료 효과)

  • Lee Han-Chang;Yeom Mijung;Kim Gun-Ho;Shim In-Sop;Choi Kang-Duk;Lee Hye-Jung;Hahm Dae-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.346-351
    • /
    • 2003
  • The current studies investigated the therapeutic effects of Ephedra sinica Stapf (ES) herb-acupuncture on the inflammatory responses of rat arthritic joint, which was induced by the intradermal injection of heat-killed Mycobacterium tuberculosis emulsified in squalene to the base of the tail. The measurements of body weight and articular index were exploited as the assessment methods addressing arthritic symptoms, and the expression profiles of cytokines such as TNF-α, IL-1β and IL-6 in the rat joint were analyzed using RT-PCR. The articular indexes of arthritic rats were significantly restored after the treatment with ES herb-acupuncture. Although the clinical symptoms of arthritic rats were apparently alleviated by the ES treatments, their body weights were not recovered. It maybe due to the weight-loss and energy enhancement effects of ES extracts. The expression of TNF-α, IL-1β and IL-6 genes, which were highly stimulated in the knee joints of arthritic rats, were restored to the levels of normal rats after the ES treatment. The therapeutic effect of ES herb-acupuncture was not observed in ES-treated, non-acupoint arthritic group as a sham control. The ES herb-acupuncture into an acupoint ST36 was found to be effective in alleviating the arthritic symptoms in adjuvant-induced arthritis rats as regards the body weight, joint appearance and the expression profiles of inflammatory cytokines.

Overexpression of an oligopeptide transporter gene enhances heat tolerance in transgenic rice (Oligopeptide transporter 관여 유전자 도입 형질전환벼의 고온스트레스 내성 증진)

  • Jeong, Eun-Ju;Song, Jae-Young;Yu, Dal-A;Kim, Me-Sun;Jung, Yu-Jin;Kang, Kwon Kyoo;Park, Soo-Chul;Cho, Yong-Gu
    • Journal of Plant Biotechnology
    • /
    • v.44 no.3
    • /
    • pp.296-302
    • /
    • 2017
  • Rice (Oryza sativa) cultivars show an impairment of growth and development in response to abiotic stresses such as drought, salinity, heat and cold at the early seedling stage. The tolerance to heat stress in plants has been genetically modulated by the overexpression of heat shock transcription factor genes or proteins. In addition to a high temperature-tolerance that has also been altered by elevating levels of osmolytes, increasing levels of cell detoxification enzymes and through altering membrane fluidity. To examine the heat tolerance in transgenic rice plants, three OsOPT10 overexpressing lines were characterized through a physiological analysis, which examined factors such as the electrolyte leakage (EL), soluble sugar and proline contents. We further functionally characterized the OsOPT10 gene and found that heat induced the expression of OsOPT10 and P5CS gene related proline biosynthesis. It has been suggested that the expression of OsOPT10 led to elevated heat tolerance in transgenic lines.

Optimization of a Virus-Induced Gene Silencing System with Soybean yellow common mosaic virus for Gene Function Studies in Soybeans

  • Kim, Kil Hyun;Lim, Seungmo;Kang, Yang Jae;Yoon, Min Young;Nam, Moon;Jun, Tae Hwan;Seo, Min-Jung;Baek, Seong-Bum;Lee, Jeom-Ho;Moon, Jung-Kyung;Lee, Suk-Ha;Lee, Su-Heon;Lim, Hyoun-Sub;Moon, Jae Sun;Park, Chang-Hwan
    • The Plant Pathology Journal
    • /
    • v.32 no.2
    • /
    • pp.112-122
    • /
    • 2016
  • Virus-induced gene silencing (VIGS) is an effective tool for the study of soybean gene function. Successful VIGS depends on the interaction between virus spread and plant growth, which can be influenced by environmental conditions. Recently, we developed a new VIGS system derived from the Soybean yellow common mosaic virus (SYCMV). Here, we investigated several environmental and developmental factors to improve the efficiency of a SYCMV-based VIGS system to optimize the functional analysis of the soybean. Following SYCMV: Glycine max-phytoene desaturase (GmPDS) infiltration, we investigated the effect of photoperiod, inoculation time, concentration of Agrobacterium inoculm, and growth temperature on VIGS efficiency. In addition, the relative expression of GmPDS between non-silenced and silenced plants was measured by qRT-PCR. We found that gene silencing efficiency was highest at a photoperiod of 16/8 h (light/dark) at a growth temperature of approximately $27^{\circ}C$ following syringe infiltration to unrolled unifoliolate leaves in cotyledon stage with a final SYCMV:GmPDS optimal density $(OD)_{600}$ of 2.0. Using this optimized protocol, we achieved high efficiency of GmPDS-silencing in various soybean germplasms including cultivated and wild soybeans. We also confirmed that VIGS occurred in the entire plant, including the root, stem, leaves, and flowers, and could transmit GmPDS to other soybean germplasms via mechanical inoculation. This optimized protocol using a SYCMV-based VIGS system in the soybean should provide a fast and effective method to elucidate gene functions and for use in large-scale screening experiments.

The Effect of the Plasma Treatment on PLGA Scaffold for Adhesion and Chondrogenic Differentiation of Human Adipose-derived Stromal Cells (인체지방유래 간질세포의 부착 및 연골분화유도를 위한 PLGA 지지체의 플라즈마 처리 효과)

  • Dong, Chun Ji;Jun, Young Joon;Cho, Hyun Mi;Oh, Deuk Young;Han, Dong Keun;Rhie, Jong Won;Ahn, Sang Tae
    • Archives of Plastic Surgery
    • /
    • v.33 no.1
    • /
    • pp.46-52
    • /
    • 2006
  • High-density micromass culture was needed to take three dimensions culture with ASCs(adipose derived stromal cells) and chondrogenesis. However, the synthetic polymer has hydrophobic character and low affinity to cells and other biomolecules. Therefore, the surface modification without changes of physical and chemical properties is necessary for more suitable condition to cells and biomolecules. This study was performed to investigate the effect of surface modification of poly (lactic-co-glycolic acid)(PLGA) scaffold by plasma treatment (P(+)) on the adhesion, proliferation and chondrogenesis of ASCs, and not plasma treatment (P(-)). ASCs were isolated from human subcutaneous adipose tissue obtained by lipectomy and liposuction. At 1 hour 30 minutes and 3days after cell seeding onto the P(-) group and the P(+) group, total DNA amount of attached and proliferated ASCs markedly increased in the P(+) group (p < 0.05). The changes of the actin under confocal microscope were done for evaluation of cellular affinity, at 1 hour 30 minutes, the shape of the cells was spherical form in all group. At 3rd day, the shape of the cells was fiber network form and finely arranged in P(+) group rather than in P(-) group. RT-PCR analysis of cartilage-specific type II collagen and link protein were expressed in 1, 2 weeks of induction. Amount of Glycoaminoglycan (GAG) markedly increased in P(+) group(p < 0.05). In a week, extracellular matrix was not observed in the Alcian blue and Safranin O staining. However in 2 weeks, it was observed that sulfated proteoglycan increased in P(+) group rather than in P(-) group. In conclusion, we recognized that plasma treatment of PLGA scaffold could increase the hydrophilic property of cells, and provide suitable environment for high-density micromass culture to chondrogenesis

The Effect of the Transcriptional Regulation of Sp1 for TGF-β1 and CTGF Expression in Scar Formation (반흔형성 과정에서 Sp1 전사인자 조절에 의한 TGF-β1 및 CTGF의 발현)

  • Park, Dong Man;Sohn, Dae Gu;Han, Ki Hwan;Lee, Sun Young;Chae, Young Mi;Chang, Young Chae;Park, Kwan Kyu
    • Archives of Plastic Surgery
    • /
    • v.33 no.1
    • /
    • pp.39-45
    • /
    • 2006
  • This study is to examine the relationship between TGF-b1 expression and CTGF expression, and to evaluate the effect of Sp1 blockade on the expression of TGF-b1, CTGF and extracellular genes, clones of fibroblasts stably transfected with Sp1 decoy ODN. R-Sp1 decoy ODN was highly resistant to degradation by nucleases or serum, compared to the linear or phosphorothioated-Sp1 decoy ODN. Skin wounds were created on the back of 36 anesthetized rats. They were divided into four groups-the rats with normal skin, with wounded skin without decoy, with wounded skin injected with R-Sp1 decoy, and with wounded skin injected with mismatched R-Sp1 decoy, respectively. Skins were collected at 3rd, 5th, 7th, 14th day after wounding. Cellular RNA was extracted by RT-PCR analysis. TGF-${\beta}1$ and CTGF were deeply related with skin fibrosis during scar formation and it appeared that TGF-${\beta}1$ may cause the induction of CTGF expression. R-Sp1 decoy ODN inhibited TGF-${\beta}1$ and CTGF expression both in cultured fibroblasts and in the skin of rats. These results indicate that targeting Sp1 with R-type decoy efficiently blocks extracellular matrix gene expression, and suggest an important new therapeutic approach to control the scarring in normal wound healing and fibrotic disorders.

Effects of Chelidonii Herbal-acupuncture solution Anti-inflammatory in RAW 264.7 macrophages (백굴채약침액(白屈菜藥針液)이 LPS로 유도(誘導)된 RAW 264.7 대식세포(大食細胞)에서의 항염증효과(抗炎症效果))

  • Park, Dong-Cheon;Park, Ji-Hyeon;Lee, U-Kyung;Leek, Jin-Kyu;Seo, Il-Bok;Kim, Ho-Hyun;Kim, Jeong-Seon;Kim, Ee-Hwa
    • Korean Journal of Acupuncture
    • /
    • v.21 no.2
    • /
    • pp.125-137
    • /
    • 2004
  • Objectives : Recently, Herbal-acupuncture therapeutics has been used for the treatment of inflammatory diseases such as rheumatoid arthritis. Especially, we have been interested in chemical mediators concerned with inflammation such as prostaglandin, cytokine, nitrous oxide. The purpose of this study is investigated that the effect of Chelidonii Herbal-acupuncture solution in lipopolysaccharide-stimulated RAW 264.7 macrophages, performed several expeimental items : those are prostaglandin $E_2$, nitric oxide and cyclooxygenase-2. Methods : The cytotoxicity of Chelidonii Herbal-acupuncture solution in RAW 264.7 macrophages were measured by MTT-based cytotoxicity assay. In order to observe cyclooxygenase-2 mRNA expression in lipopolysaccharide-stimulated RAW 264.7 macrophages, RT-PCR was used. Prostaglandin $E_2$ formation and nitric oxide production was measured by competitive enzyme immunoassay and Griess assay. Results : 1.The MTT assay demonstrated that cytotoxic effect of Chelidonii Herbal-acupuncture solution in RAW 264.7 macrophages were not appeared before concentration of 1mg/ml. 2.Chelidonii Herbal-acupuncture solution inhibited cyclooxygenase-2 mRNA expression in lipopolysaccharide-stimulated RAW 264.7 macrophages. 3. Chelidonii Herbal-acupuncture solution inhibited nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 macrophages. 4. Chelidonii Herbal-acupuncture solution inhibited prostaglandin $E_2$ formation in lipopolysaccharide-stimulated RAW 264.7 macrophages. Conclusions : On the basis of these results, It was shown that Chelidonii Herbal-acupuncture solution is significantly able to inhibit the production of $PGE_2$ and NO, as well as COX-2 mRNA expression. Our results may provide new mechanism by which Chelidonii Herbal-acupuncture solution accounts for its beneficial effect on accelerating wound healing and anti-inflammation.

  • PDF

Genome-wide Methylation Analysis and Validation of Cancer Specific Biomarker of Head and Neck Cancer (전장유전체수준 메틸레이션 분석을 통한 두경부암 특이 메틸레이션 바이오마커의 발굴)

  • Chang, Jae Won;Park, Ki Wan;Hong, So-Hye;Jung, Seung-Nam;Liu, Lihua;Kim, Jin Man;Oh, Taejeong;Koo, Bon Seok
    • Korean Journal of Head & Neck Oncology
    • /
    • v.33 no.1
    • /
    • pp.21-29
    • /
    • 2017
  • Methylation of CpG islands in the promoter region of genes acts as a significant mechanism of epigenetic gene silencing in head and neck squamous cell carcinoma (HNSCC). DNA methylation markers are particularly advantageous because DNA methylation is an early event in tumorigenesis, and the epigenetic modification, 5-methylcytosine, is a stable mark. In the present study, we assessed the genome-wide preliminary screening and were to identify novel methylation biomarker candidate in HNSCC. Genome-wide methylation analysis was performed on 10 HNSCC tumors using the Methylated DNA Isolation Assay (MeDIA) CpG island microarray. Validation was done using immunohistochemistry using tissue microarray of 135 independent HNSCC tumors. In addition, in vitro proliferation, migration/invasion assays, RT-PCR and immunoblotting were performed to elucidate molecular regulating mechanisms. Our preliminary validation using CpG microarray data set, immunohisto-chemistry for HNSCC tumor tissues and in vitro functional assays revealed that methylation of the Homeobox B5 (HOXB5) and H6 Family Homeobox 2 (HMX2) could be possible novel methylation biomarkers in HNSCC.

Donor Cell Source (Miniature Pig and Landrace Pig) Affects Apoptosis and Imprinting Gene Expression in Porcine Nuclear Transfer Embryos

  • Park, Mi-Rung;Hwang, In-Sun;Shim, Joo-Hyun;Moon, Hyo-Jin;Kim, Dong-Hoon;Ko, Yeoung-Gyu;Seong, Hwan-Hoo;Im, Gi-Sun
    • Journal of Embryo Transfer
    • /
    • v.23 no.2
    • /
    • pp.101-108
    • /
    • 2008
  • This study investigated the developmental ability and gene expression of somatic cell nuclear transfer embryos using ear skin fibroblast cells derived from miniature pig. When miniature pig (m) and landrace pig (p) were used as donor cells, there were no differences in cleavage (79.2 vs. 78.2%) and blastocyst rates (27.4 vs. 29.7%). However, mNT blastocysts showed significantly higher apoptosis rate than that of pNT blastocysts (6.1 vs. 1.7%) (p<0.05). The number of nuclei in pNT blastosysts was significantly higher than that of mNT (35.8 vs. 29.3) (p<0.05). Blastocysts were analyzed using Realtime RT-PCR to determine the expression of Bax-${\alpha}$, Bcl-xl, H19, IGF2, IGF2r and Xist. Bax-${\alpha}$ was higher in mNT blastocyst than pNT blastocyst (p<0.05). There was no difference in Bcl-xl between two NT groups. Bax-${\alpha}$/Bcl-xl was, however, significantly higher in mNT blastocyst compared to pNT. The expression of imprinting genes were aberrant in blastocysts derived from NT compared to in vivo blastocysts. H19 and IGF2r were significantly lower in mNT blastocysts (p<0.05). The expression of IGF2 and Xist was similar in two NT groups. However, imprinting genes were expressed aberrantly in mNT compared to pNT blastocysts. The present results suggest that the NT between donor cells derived from miniature pig and recipient oocytes derived from crossbred pig might affect reprogramming of donor cell, resulting in high apoptosis and aberrant expression patterns of imprinting genes.

Protective Effect of Ferments of Hot-water Extract Mixture from Rhodiola sachalinensis and Red Ginseng on Oxidative Stress-induced C2C12 Myoblast (C2C12 근육세포의 산화적 손상에 대한 홍경천-홍삼 추출물 혼합액 발효물의 보호효과)

  • Yoon, Bo-Ra;Kim, Young-Hyun;Lee, Jong-Seok;Hong, Hee-Do;Rhee, Young-Kyoung;Cho, Chang-Won;Kim, Young-Chan;Lee, Ok-Hwan
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.3
    • /
    • pp.485-491
    • /
    • 2013
  • Rhodiola spp. and red ginseng have been used for food and medicinal applications in disease chemoprevention in many Asian countries. Increased oxidative stress by reactive oxygen species (ROS) has been proposed to be a major cause of muscle fatigue. The present study was designed to investigate the protective effects of a fermented hot-water extract mixture from Rhodiola sachalinensis and red ginseng (MFR) on cell damage and the antioxidant enzyme system in $H_2O_2$-induced oxidative stress in skeletal muscle cells. C2C12 myoblasts were treated with various concentrations of NFR (non-fermented Rhodiola sachalinensis extract), FR (fermented hot-water extract from Rhodiola sachalinensis) and MFR for up to 5 days after the standard induction of differentiation, followed by semi-quantitative RT-PCR. MFR treatment dose-dependently protected oxidative damage of C2C12 cells. The treatment with MFR also enhanced mRNA expressions of MyoD, Cu/Zn SOD, Mn-SOD and GPX up to 16%. These results indicate that MFR exerts an anti-oxidative effect through a mechanism (s) that may involve the up-regulation of antioxidant enzymes, which may be important for the cellular redox environment in muscle cells.

Cloning of Pig Kidney cDNA Encoding an Angiotensin I Converting Enzyme (돼지 신장의 Angiotensin I Converting Enzyme cDNA 클로닝)

  • Yoon, Jang-Ho;Yoon, Joo-Ok;Hong, Kwang-Won
    • Applied Biological Chemistry
    • /
    • v.49 no.4
    • /
    • pp.293-297
    • /
    • 2006
  • Angiotensin converting enzyme(ACE) is a zinc-containing dipeptidase widely distributed in mammalian tissues and is thought to play a significant role in blood pressure regulation by hydrolyzing angiotensin I to the potent vasoconstrictor, angiotensin II. Recently, the presence of ACE in pig ovary was reported and the ACE from pig kidney was isolated and characterized. However no nucleotide sequence of the ACE gene from pig is yet known. We report here the cloning of the ACE cDNA from pig kidney by using the reverse transcriptase-polymerase chain reaction. The complete amino acid sequence deduced from the cDNA contains 1309 residues with a molecular mass of 150 kDa, beginning with a signal peptide of 33 amino acids. Amino acid sequence analysis showed that pig kidney ACE is also probably anchored by a short transmembrane domain located near the C-terminus. This protein contains a tandem duplication of the two homologous amino acid peptidase domain. Each of these two domains bears a putative metal-binding site (His-Glu-Met-Gly-His) identified in mammalian somatic ACE. The alignment of pig ACE amino acid sequence with human, rabbit, and mouse reveals that both two domains have been highly conserved during evolution.