Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.04.2015.0063

Optimization of a Virus-Induced Gene Silencing System with Soybean yellow common mosaic virus for Gene Function Studies in Soybeans  

Kim, Kil Hyun (National Institute of Crop Science, Rural Development Administration)
Lim, Seungmo (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology)
Kang, Yang Jae (Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University)
Yoon, Min Young (Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University)
Nam, Moon (School of Applied Biosciences, Kyungpook National University)
Jun, Tae Hwan (Department of Plant Bioscience, College of Natural Resources & Life Science, Pusan National University)
Seo, Min-Jung (National Institute of Crop Science, Rural Development Administration)
Baek, Seong-Bum (National Institute of Crop Science, Rural Development Administration)
Lee, Jeom-Ho (National Institute of Crop Science, Rural Development Administration)
Moon, Jung-Kyung (National Institute of Crop Science, Rural Development Administration)
Lee, Suk-Ha (Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University)
Lee, Su-Heon (School of Applied Biosciences, Kyungpook National University)
Lim, Hyoun-Sub (Department of Applied Biology, Chungnam National University)
Moon, Jae Sun (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology)
Park, Chang-Hwan (National Institute of Crop Science, Rural Development Administration)
Publication Information
The Plant Pathology Journal / v.32, no.2, 2016 , pp. 112-122 More about this Journal
Abstract
Virus-induced gene silencing (VIGS) is an effective tool for the study of soybean gene function. Successful VIGS depends on the interaction between virus spread and plant growth, which can be influenced by environmental conditions. Recently, we developed a new VIGS system derived from the Soybean yellow common mosaic virus (SYCMV). Here, we investigated several environmental and developmental factors to improve the efficiency of a SYCMV-based VIGS system to optimize the functional analysis of the soybean. Following SYCMV: Glycine max-phytoene desaturase (GmPDS) infiltration, we investigated the effect of photoperiod, inoculation time, concentration of Agrobacterium inoculm, and growth temperature on VIGS efficiency. In addition, the relative expression of GmPDS between non-silenced and silenced plants was measured by qRT-PCR. We found that gene silencing efficiency was highest at a photoperiod of 16/8 h (light/dark) at a growth temperature of approximately $27^{\circ}C$ following syringe infiltration to unrolled unifoliolate leaves in cotyledon stage with a final SYCMV:GmPDS optimal density $(OD)_{600}$ of 2.0. Using this optimized protocol, we achieved high efficiency of GmPDS-silencing in various soybean germplasms including cultivated and wild soybeans. We also confirmed that VIGS occurred in the entire plant, including the root, stem, leaves, and flowers, and could transmit GmPDS to other soybean germplasms via mechanical inoculation. This optimized protocol using a SYCMV-based VIGS system in the soybean should provide a fast and effective method to elucidate gene functions and for use in large-scale screening experiments.
Keywords
GmPDS; optimal condition; soybean; SYCMV; VIGS;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Burch-Smith, T. M., Schiff, M., Liu, Y. and Dinesh-Kumar, S. P. 2006. Efficient virus-induced gene silencing in Arabidopsis. Plant Physiol. 142:21-27.   DOI
2 Burch-Smith, T. M., Anderson, J. C., Martin, G. B. and Dinesh- Kumar, S. P. 2004. Applications and advantages of virusinduced gene silencing for gene function studies in plants. Plant J. 39:734-746.   DOI
3 Bruun-Rasmussen, M., Madsen, C. T., Jessing, S. and Albrechtsen, M. 2007. Stability of Barley stripe mosaic virus-induced gene silencing in barley. Mol. Plant-Microbe Interact. 20: 1323-1331.   DOI
4 Chiuoaru, M., Gheorghita, H. and Manafu, D. 2012. Preliminary research concerning the identification of reistance genotypes on Cucurbitaceae family in artificial infection conditions with cmv (Cucumber mosaic virus). Scientific Papers. Series B. Horticulture.
5 Cook, D. E., Lee, T. G., Guo, X., Melito, S., Wang, K., Bayless, A. M., Wang, J., Hughes, T. J., Willis, D. K. and Clemente, T. E. 2012. Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science 338:1206-1209.   DOI
6 Graham, P. H. and Vance, C. P. 2003. Legumes: importance and constraints to greater use. Plant Physiol. 131:872-877.   DOI
7 Hwang, E. Y., Song, Q., Jia, G., Specht, J. E., Hyten, D. L., Costa, J. and Cregan, P. B. 2014. A genome-wide association study of seed protein and oil content in soybean. BMC Genomics 15:1.   DOI
8 Kandoth, P. K., Heinz, R., Yeckel, G., Gross, N. W., Juvale, P. S., Hill, J., Whitham, S. A., Baum, T. J. and Mitchum, M. G. 2013. A virus-induced gene silencing method to study soybean cyst nematode parasitism in Glycine max. BMC Res. Notes 6:255.   DOI
9 Lam, H.-M., Xu, X., Liu, X., Chen, W., Yang, G., Wong, F. L., Li, M.-W., He, W., Qin, N., Wang, B., Li, Jun., Jian, M., Wang, J., Shao, G., Wang, Jun., Sun, S. S.-M. and Zhang, G. 2010. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genentic diversity and selection. Nature Genet. 42:1053-1059.   DOI
10 Lim, S., Nam, M., Kim, K. H., Lee, S.-H., Moon, J.-K., Lim, H.-S., Choung, M.-G., Kim, S.-M. and Moon, J. S. 2015. Development of a new vector using soybean yellow common mosaic virus for gene function study or heterologous protein expression in soybeans. J. Virol. Methods doi: 10.1016/j.jviromet.2015.11.005.   DOI
11 Lu, R., Martin-Hernandez, A. M., Peart, J. R., Malcuit, I. and Baulcombe, D. C. 2003. Virus-induced gene silencing in plants. Methods 30:296-303.   DOI
12 Mano, H., Fujii, T., Sumikawa, N., Hiwatashi, Y. and Hasebe, M. 2014. Development of an Agrobacterium-Mediated Stable Transformation Method for the Sensitive Plant Mimosa pudica. PloS ONE 9:e88611.   DOI
13 Meyer, J. D., Silva, D. C., Yang, C., Pedley, K. F., Zhang, C., van de Mortel, M., Hill, J. H., Shoemaker, R. C., Abdelnoor, R. V. and Whitham, S. A. 2009. Identification and analyses of candidate genes for Rpp4-mediated resistance to Asian soybean rust in soybean. Plant Physiol. 150:295-307.   DOI
14 Nagamatsu, A., Masuta, C., Senda, M., Matsuura, H., Kasai, A., Hong, J. S., Kitamura, K., Abe, J. and Kanazawa, A. 2007. Functional analysis of soybean genes involved in flavonoid biosynthesis by virus-induced gene silencing. Plant Biotechnol. J. 5:778-790.   DOI
15 Nam, M., Kim, J.-S., Park, S.-J., Park, C. Y., Lee, J.-S., Choi, H.-S., Kim, J.-S., Kim, H. G., Lim, S. and Moon, J. S. 2012. Biological and molecular characterization of Soybean yellow common mosaic virus, a new species in the genus Sobemovirus. Virus Res. 163:363-367.   DOI
16 Kawai, T., Gonoi, A., Nitta, M., Kaido, M., Yamagishi, N., Yoshikawa, N. and Tao, R. 2014. Virus-induced gene silencing in apricot (Prunus armeniaca L.) and Japanese apricot (P. mume Siebold & Zucc.) with the Apple latent spherical virus vector system. J. Jpn Soc Hort Sci. 83:23-31.   DOI
17 Zhang, C. and Ghabrial, S. A. 2006. Development of Bean pod mottle virus-based vectors for stable protein expression and sequence-specific virus-induced gene silencing in soybean. Virology 344:401-411.   DOI
18 Anai, T. 2012. Potential of a mutant-based reverse genetic approach for functional genomics and molecular breeding in soybean. Breeding Sci. 61:462-467.   DOI
19 Bandillo, N., Jarquin, D., Song, Q., Nelson, R., Cregan, P., Specht, J. and Lorenz, A. 2015. A population structure and genome-wide association analysis on the USDA soybean germplasm collection. Plant Genome 8:1-13.
20 Kang, Y. J., Kim, K. H., Shim, S., Yoon, M. Y., Sun, S., Kim, M. Y., Van, K. and Lee, S.-H. 2012. Genome-wide mapping of NBS-LRR genes and their association with disease resistance in soybean. BMC Plant Biol. 12:139.   DOI
21 Kim, K. H., Kang, Y. J., Kim, D. H., Yoon, M. Y., Moon, J. K., Kim, M. Y., Van, K. and Lee, S. H. 2011. RNA-Seq analysis of a soybean near-isogenic line carrying bacterial leaf pustule-resistant and-susceptible alleles. DNA Res. 18:483-497.   DOI
22 Kim, K. H., Kim, M. Y., Van, K., Moon, J.-K., Kim, D. H. and Lee, S.-H. 2008. Marker-assisted foreground and background selection of near isogenic lines for bacterial leaf pustule resistant gene in soybean. J. Crop Sci. Biotechnol. 11:263-268.
23 Kim, K. H., Lee, S., Seo, M.-J., Lee, G.-A., Ma, K.-H., Jeong, S.-C., Lee, S.-H., Park, E. H., Kwon, Y.-U. and Moon, J.-K. 2014. Genetic diversity and population structure of wild soybean (Glycine soja Sieb. and Zucc.) accessions in Korea. Plant Genet. Res. 12:S45-S48.   DOI
24 Kim, M. Y., Lee, S., Van, K., Kim, T.-H., Jeong, S.-C., Choi, I.-Y., Kim, D.-S., Lee, Y.-S., Park, D., Ma, J., Kim, W.-Y., Kim, B.-C., Park, S., Lee, K.-A., Kim, D. H., Kim, K. H., Shin, J. H., Jang, Y. E., Kim, K. D., Liu, W. X., Chaisan, T., Kang, Y. J., Lee, Y.-H., Kim, K.-H., Moon, J.-K., Schmutz, J., Jackson, S. A., Bhak, J. and Lee, S.-H. 2010. Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. and Zucc.) genome. Proc. Natl. Acad. Sci. USA 107:22032-22037.   DOI
25 Robertson, D. 2004. VIGS vectors for gene silencing: many targets, many tools. Annu. Rev. Plant Biol. 55:495-519.   DOI
26 Pandey, A. K., Yang, C., Zhang, C., Graham, M. A., Horstman, H. D., Lee, Y., Zabotina, O. A., Hill, J. H., Pedley, K. F. and Whitham, S. A. 2011. Functional analysis of the Asian soybean rust resistance pathway mediated by Rpp2. Mol. Plant-Microbe Interact. 24:194-206.   DOI
27 Panja, S., Aich, P. B. and Basu, T. 2008. How does plasmid DNA penetrate cell membranes in artificial transformation process of Escherichia coli? Mol. Membr. Biol. 25:411-422.   DOI
28 Pang, J., Zhu, Y., Li, Q., Liu, J., Tian, Y., Liu, Y. and Wu, J. 2013. Development of Agrobacterium-mediated virus-induced gene silencing and performance evaluation of four marker genes in Gossypium barbadense. PloS ONE 8:e73211.   DOI
29 Schmittgen, T. D. and Livak, K. J. 2008. Analyzing real-time PCR data by the comparative CT method. Nature Protocols 3: 1101-1108.   DOI
30 Schmutz, J., Cannon, S. B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., Hyten, D. L., Song, Q., Thelen, J. J., Cheng, J., Xu, D., Hellsten, U., May, G. D., Yu, Y., Sakurai, T., Umezawa, T., Bhattacharyya, M. K., Sandhu, D., Valliyodan, B., Lindquist, E., Peto, M., Grant, D., Shu, S., Goodstein, D., Barry, K., Futrell-Griggs, M., Abernathy, B., Du, J., Tian, Z., Zhu, L., Gill, N., Joshi, T., Libault, M., Sethuraman, A., Zhang, X.-C., Shinozaki, K., Nguyen, H. T., Wing, R. A., Cregan, P., Specht, J., Grimwood, J., Rokhsar, D., Stacey, G., Shoemaker, R. C. and Jackson, S. A. 2010. Genome sequence of the palaeopolyploid soybean. Nature 463:178-183.   DOI
31 Senthil-Kumar, M. and Mysore, K. S. 2011. New dimensions for VIGS in plant functional genomics. Trends Plant Sci. 16: 656-665.   DOI
32 Unver, T. and Budak, H. 2009. Virus-induced gene silencing, a post transcriptional gene silencing method. Int. J. Plant Genomics 198680.
33 Seo, H. S., Li, J., Lee, S., Yu, J., Kim, K., Lee, S., Lee, I. and Paek, N. 2007. The hypernodulating nts mutation induces jasmonate synthetic pathway in soybean leaves. Mol. Cells 24:185.
34 Soto-Arias, J. and Munkvold, G. 2011. Effects of virus infection on susceptibility of soybean plants to Phomopsis longicolla. Plant Dis. 95:530-536.   DOI
35 Sung, Y. C., Lin, C. P. and Chen, J. C. 2014. Optimization of virus-induced gene silencing in Catharanthus roseus. Plant Pathol. 63:1159-1167.   DOI
36 Wang, C., Cai, X., Wang, X. and Zheng, Z. 2006. Optimisation of tobacco rattle virus-induced gene silencing in Arabidopsis. Func. Plant Biol. 33:347-355.   DOI
37 Wang, J., Li, D., Gong, Z. and Zhang, Y. 2013. Optimization of virus-induced gene silencing in pepper (Capsicum annuum L.). Genet. Mol. Res. 12:2492-2506.   DOI
38 Yamada, T., Takagi, K. and Ishimoto, M. 2012. Recent advances in soybean transformation and their application to molecular breeding and genomic analysis. Breeding Sci. 61:480.   DOI
39 Yamagishi, N. and Yoshikawa, N. 2009. Virus-induced gene silencing in soybean seeds and the emergence stage of soybean plants with Apple latent spherical virus vectors. Plant Mol. Biol. 71:15-24.   DOI
40 Zhang, C., Bradshaw, J. D., Whitham, S. A. and Hill, J. H. 2010. The development of an efficient multipurpose bean pod mottle virus viral vector set for foreign gene expression and RNA silencing. Plant Physiol. 153:52-65.   DOI