• Title/Summary/Keyword: RF-MEMS

Search Result 169, Processing Time 0.049 seconds

RF MEMS Package 기술 및 응용

  • 김진양;이해영
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.2
    • /
    • pp.60-70
    • /
    • 2002
  • 최근 고성능/고집적 RF 소자 및 시스템들의 경박 단소화 추세에 따라 RF 무선 통신 분야에도 초소형미세 가공 기술인 MEMS 기술이 크게 주목받고 있다. 이에 본 고에서는 RF 부품 및 시스템을 MEMS 기술로서 실장하는 RF MEMS 패키지 기술에 대하여 간단히 살펴보았다. 우선, 실리콘 기반의 MEMS 패키지가 우수한 열 전달 특성과 저 손실의 고주파특성으로 인해 RF 시스템의 실장에 매우 적합함을 확인하였다. 또한, MEMS 기술을 이용함으로써 RF회로와 패키지 제작 공정이 동시에 이루어질 수 있도록 하는 일괄터리공정에 대하여 소개하였다.

RF MEMS Passives for On-Chip Integration (단일칩 집적화를 위한 RF MEMS 수동 소자)

  • 박은철;최윤석;윤준보;하두영;홍성철;윤의식
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.2
    • /
    • pp.44-52
    • /
    • 2002
  • 본 논문에서는 RF와 마이크로파 응용을 위한 MEMS 수동 소자에 대한 내용이다. 이 수동 소자들을 만들기 위해서 개발된 3타원 MEMS공정은 기존의 실리콘 공정과 완전한 호환성을 가지고 한 칩으로 집적화 시킬 수 있는 공정이다. 이 3차원 MEMS 공정은 기존 실리콘 긍정이 가지고 있는 한계를 극복하기 위한 방법으로써 개발되었다. 개발된 공정을 이용하여 실리콘 공정에서 구현할 수 없었던 좋은 성능의 인덕터, 트랜스포머 및 전송선을 RF와 마이크로파 응용을 위해서 구현하였다. 저 전압, 높은 차단율을 위한 push-pull 개념을 도입한 MEMS 스위치를 구현하였다. 또한 높은 Q를 갖는 MEMS 인덕터를 최초로 CMOS 칩과 집적화에 성공하여 600kHz 옵셋 주파수에서 -122 dBc/Hz의 특성을 갖는 2.6 GHz 전압 제어 발진기를 제작하였다.

TOC (Transceiver-on-Chip)를 위한 RF MEMS (Micro Electromechanical Systems) 기술

  • 전국진;성우경
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.11a
    • /
    • pp.55-60
    • /
    • 2001
  • RF MEMS is an exciting emerging technology that has great potential to develop TOC (Transceiver-on-Chip). Applications of the RF MEMS to wireless communications systems are presented. The ability of the RF MEMS technology to enhance the performance and to reduce the size of passive components, in particular, switches, inductors, and tunable capacitors, is addressed. A number of potential wireless system opportunities for the TOC are awaiting the maturation of the RF MEMS technology.

  • PDF

Implementation of a Low Actuation Voltage SPDT MEMS RF Switch Applied PZT Cantilever Actuator and Micro Seesaw Structure (PZT 캔틸레버 구동기와 마이크로 시소구조를 적용한 저전압 SPDT MEMS RF 스위치 구현)

  • Lee, Dae-Sung;Kim, Won-Hyo;Jung, Seok-Won;Cho, Nam-Kyu;Sung, Woo-Kyeong;Park, Hyo-Derk
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.147-150
    • /
    • 2005
  • Low actuation voltage and no contact stiction are the important factors to apply MEMS RF switches to mobile devices. Conventional electrostatic MEMS RF switches require several tens of voltages for actuation. In this paper we propose PAS MEMS RF switch which adopt PZT actuators and seesaw cantilevers to meet the above requirements. The fundamental structures of PAS MEMS switch were designed, optimized, and fabricated. Through the developed processes PAS SPDT MEMS RF switches were successfully fabricated on 4" wafers and they showed good electrical properties. The driving voltage was less than 5 volts. And the insertion loss was -0.5dB and the isolation was 35dB at 5GHz. The switching speed was about 5kHz. So these MEMS RF switches can be applicable to mobile communication devices or wireless multi-media devices at lower than 6GHz.

  • PDF

Wafer-Level Package of RF MEMS Switch using Au/Sn Eutectic Bonding and Glass Dry Etch (금/주석 공융점 접합과 유리 기판의 건식 식각을 이용한 고주파 MEMS 스위치의 기판 단위 실장)

  • Kang, Sung-Chan;Jang, Yeon-Su;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.58-63
    • /
    • 2011
  • A low loss radio frequency(RF) micro electro mechanical systems(MEMS) switch driven by a low actuation voltage was designed for the development of a new RF MEMS switch. The RF MEMS switch should be encapsulated. The glass cap and fabricated RF MEMS switch were assembled by the Au/Sn eutectic bonding principle for wafer-level packaging. The through-vias on the glass substrate was made by the glass dry etching and Au electroplating process. The packaged RF MEMS switch had an actuation voltage of 12.5 V, an insertion loss below 0.25 dB, a return loss above 16.6 dB, and an isolation value above 41.4 dB at 6 GHz.

See-saw Type RF MEMS Switch with Narrow Gap Vertical Comb

  • Kang, Sung-Chan;Moon, Sung-Soo;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.3
    • /
    • pp.177-182
    • /
    • 2007
  • This paper presents the see-saw type RF MEMS switch based on a single crystalline silicon structure with narrow gap vertical comb. Low actuation voltage and high isolation are key features to be solved in electrostatic RF MEMS switch design. Since these parameters in conventional parallel plate RF MEMS switch designs are in trade-off relationship, both requirements cannot be met simultaneously. In the vertical comb design, however, the actuation voltage is independent of the vertical separation distance between the contact electrodes. Therefore, the large separation gap between contact electrodes is implemented to achieve high isolation. We have designed and fabricated RF MEMS switch which has 46dB isolation at 5GHz, 0.9dB insertion loss at 5GHz and 40V actuation voltage.

Application of Au-Sn Eutectic Bonding in Hermetic Rf MEMS Wafer Level Packaging (Au-Sn 공정 접합을 이용한 RF MEMS 소자의 Hermetic 웨이퍼 레벨 패키징)

  • Wang Qian;Kim Woonbae;Choa Sung-Hoon;Jung Kyudong;Hwang Junsik;Lee Moonchul;Moon Changyoul;Song Insang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.3 s.36
    • /
    • pp.197-205
    • /
    • 2005
  • Development of the packaging is one of the critical issues for commercialization of the RF-MEMS devices. RF MEMS package should be designed to have small size, hermetic protection, good RF performance and high reliability. In addition, packaging should be conducted at sufficiently low temperature. In this paper, a low temperature hermetic wafer level packaging scheme for the RF-MEMS devices is presented. For hermetic sealing, Au-Sn eutectic bonding technology at the temperature below $300{\times}C$ is used. Au-Sn multilayer metallization with a square loop of $70{\mu}m$ in width is performed. The electrical feed-through is achieved by the vertical through-hole via filled with electroplated Cu. The size of the MEMS Package is $1mm\times1mm\times700{\mu}m$. By applying $O_2$ plasma ashing and fabrication process optimization, we can achieve the void-free structure within the bonding interface as well as via hole. The shear strength and hermeticity of the package satisfy the requirements of MIL-STD-883F. Any organic gases or contamination are not observed inside the package. The total insertion loss for the packaging is 0.075 dB at 2 GHz. Furthermore, the robustness of the package is demonstrated by observing no performance degradation and physical damage of the package after several reliability tests.

  • PDF

Package-type polarization switching antenna using silicon RF MEMS SPDT switches (실리콘 RF MEMS SPDT 스위치를 이용한 패키지 형태의 편파 스위칭 안테나)

  • Hyeon, Ik-Jae;Chung, Jin-Woo;Lim, Sung-Joon;Kim, Jong-Man;Baek, Chang-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1511_1512
    • /
    • 2009
  • This paper presents a polarization switching antenna integrated with silicon RF MEMS SPDT switches in the form of a package. A low-loss quartz substrate made of SoQ (silicon-on-quartz) bonding is used as a dielectric material of the patch antenna, as well as a packaging lid substrate of RF MEMS switches. The packaging/antenna substrate is bonded with the bottom substrate including feeding lines and RF MEMS switches by BCB adhesive bonding, and RF energy is transmitted from signal lines to antenna by slot coupling. Through this approach, fabrication complexity and degradation of RF performances of the antenna due to the parasitic effects, which are all caused from the packaging methods, can be reduced. This structure is expected to be used as a platform for reconfigurable antennas with RF MEMS tunable components. A linear polarization switching antenna operating at 19 GHz is manufactured based on the proposed method, and the fabrication process is carefully described. The s-parameters of the fabricated antenna at each state are measured to evaluate the antenna performance.

  • PDF

RF MEMS Devices for Wireless Applications

  • Park, Jae Y.;Jong U. Bu;Lee, Joong W.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.1
    • /
    • pp.70-83
    • /
    • 2001
  • In this paper, the recent progress of RF MEMS research for wireless/mobile communications is reviewed. The RF MEMS components reviewed in this paper include RF MEMS switches, tunable capacitors, high Q inductors, and thin film bulk acoustic resonators (TFBARs) to become core components for constructing miniaturized on chip RF transceiver with multi-band and multi-mode operation. Specific applications are also discussed for each of these components with emphasis on for miniaturization, integration, and performance enhancement of existing and future wireless transceiver developments.

  • PDF

RF VCO with High-Q MEMS-based Spiral Inductor (High-Q MEMS Spiral Inductor를 이용한 RF VCO)

  • 김태호;김경만;서희원;황인석;김삼동
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.987-990
    • /
    • 2003
  • This paper presents a cross-coupled RF VCO with high-Q MEMS-based spiral inductors. Since the use of high-Q inductors is critical to VCO design, MEMS-based spiral inductors with the Q-factor of nearly 22 are used for the RF VCO with an active cascode current source. The RF VCO circuits including spiral inductors have been designed and simulated in GaAs MMIC-MEMS process. The simulation results of the VCO circuits showed the phase noise of -180dBc/Hz at an offset frequency of 500KHz. The RF VCO circuit simulatinon used 2mA DC current and 3.3V supply.

  • PDF