• Title/Summary/Keyword: RF model

Search Result 637, Processing Time 0.027 seconds

A Study on Improved Optimization Method for Modeling High Resistivity SOI RF CMOS Symmetric Inductor (High Resistivity SOI RF CMOS 대칭형 인덕터 모델링을 위한 개선된 Optimization 방법 연구)

  • Ahn, Jahyun;Lee, Seonghearn
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.9
    • /
    • pp.21-27
    • /
    • 2015
  • An improved method based on direct extraction and simultaneous optimization is developed to determine model parameters of symmetric inductors fabricated by the high resistivity(HR) silicon-on-insulator(SOI) RF CMOS process. In order to improve modeling accuracy, several model parameters are directly extracted by Y and Z-parameter equations derived from two equivalent circuits of symmetric inductor and grounded center-tap one, and the number of unknown parameters is reduced using parallel resistance and total inductance equations. In order to improve optimization accuracy, two sets of measured S-parameters are simultaneously optimized while same model parameters in two equivalent circuits are set to common variables.

A New Medical Lead for Various MRI Systems (다양한 MRI 시스템에서 사용가능한 의료용 리드선)

  • Kim, Hongjoon;Yoo, Hyoungsuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.429-432
    • /
    • 2015
  • Radio Frequency (RF) coils in Magnetic Resonance Imaging (MRI) systems interact with a patient's tissues, resulting in the absorption of RF energy by the tissues. The presence of an electrically conducting medical implant may concentrate the RF energy and causes tissue heating near the implant devices. Here we present a novel design for a medical lead to reduce this undesired heating. Specific Absorption Rate (SAR), an indicator of heating, was calculated. Remcom XFdtd software was used to calculate the peak SAR distribution (1g and 10 g) in a realistic model of the human body. The model contained a medical lead that was exposed to RF magnetic fields at 64 MHz (1.5 T MRI), 128 MHz (3 T MRI) and 300 MHz (7 T MRI) using a model of an MR birdcage body coil. Our results demonstrate that, our proposed design of adding nails to the medical lead can significantly reduce the SAR for different MRI systems.

Non-Quasi-Static RF Model for SOI FinFET and Its Verification

  • Kang, In-Man
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.2
    • /
    • pp.160-164
    • /
    • 2010
  • The radio frequency (RF) model of SOI FinFETs with gate length of 40 nm is verified by using a 3-dimensional (3-D) device simulator. This paper shows the equivalent circuit model which can be used in the circuit analysis simulator. The RMS modeling error of Y-parameter was calculated to be only 0.3 %.

유도결합플라즈마에서 플라즈마 변수와 전자 에너지 분포에 대한 RF bias의 영향

  • Lee, Hyo-Chang;Jeong, Jin-Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.177-177
    • /
    • 2012
  • 진공을 기초로 한 다양한 반도체 식각 공정에서 RF bias가 결합된 유도 결합 플라즈마 소스는 널리 사용되고 있다. 하지만, 대부분의 연구는 RF bias에 의한 자기 바이어스 효과에만 한정되어 있으며, 공정 결과와 소자 품질에 결정적인 역할을 하는 플라즈마 변수들(전자 온도, 플라즈마 밀도)과 RF bias의 상관관계에 대한 연구는 거의 없는 실정이다. 본 연구에서는 RF bias가 플라즈마 변수에 미치는 영향과 비충돌 전자 가열 메커니즘의 실험적 증거에 관한 연구를 진행하였다. 플라즈마 밀도는 RF bias에 의하여 감소 또는 증가하였으며, 이러한 결과는 Fluid global model에 의한 계산과 잘 일치하는 결과를 보였다. 전자 온도는 RF bias에 의하여 증가하였으며, 적은 RF bias 전력에서는 플라즈마 전위에 갇혀있는 낮은 에너지 그룹의 전자들의 가열이 주가 되었으나, 큰 RF bias 전력에서는 높은 에너지 그룹의 전자들의 가열이 주가 됨을 관찰하였다. 이는 높은 에너지 그룹의 전자 가열 메커니즘이 anomalous skin effect에서 collisionless sheath heating으로 전이되는 것을 나타내며, bounce resonance heating이 RF bias의 전자가열에 중요한 역할을 함을 보여주는 실험적 근거이다. 플라즈마 밀도의 공간 분포는 RF bias의 인가에 의하여 더욱 균일함을 보였으며, 이는 (electro-static and electro-magnetic) edge effect에 의한 영향으로 해석될 수 있다. 이러한 RF bias와 플라즈마 변수들의 상관관계 및 전자 가열 메커니즘에 대한 연구는 방전 특성의 물리적 이해뿐만 아니라, 반도체 식각 공정에서 소자 품질 및 공정 개선을 위한 최적의 방전 조건 도출과 외부 변수 제어에 큰 도움을 주리라 예상된다.

  • PDF

Utilizing the GOA-RF hybrid model, predicting the CPT-based pile set-up parameters

  • Zhao, Zhilong;Chen, Simin;Zhang, Dengke;Peng, Bin;Li, Xuyang;Zheng, Qian
    • Geomechanics and Engineering
    • /
    • v.31 no.1
    • /
    • pp.113-127
    • /
    • 2022
  • The undrained shear strength of soil is considered one of the engineering parameters of utmost significance in geotechnical design methods. In-situ experiments like cone penetration tests (CPT) have been used in the last several years to estimate the undrained shear strength depending on the characteristics of the soil. Nevertheless, the majority of these techniques rely on correlation presumptions, which may lead to uneven accuracy. This research's general aim is to extend a new united soft computing model, which is a combination of random forest (RF) with grasshopper optimization algorithm (GOA) to the pile set-up parameters' better approximation from CPT, based on two different types of data as inputs. Data type 1 contains pile parameters, and data type 2 consists of soil properties. The contribution of this article is that hybrid GOA - RF for the first time, was suggested to forecast the pile set-up parameter from CPT. In order to do this, CPT data and related bore log data were gathered from 70 various locations across Louisiana. With an R2 greater than 0.9098, which denotes the permissible relationship between measured and anticipated values, the results demonstrated that both models perform well in forecasting the set-up parameter. It is comprehensible that, in the training and testing step, the model with data type 2 has finer capability than the model using data type 1, with R2 and RMSE are 0.9272 and 0.0305 for the training step and 0.9182 and 0.0415 for the testing step. All in all, the models' results depict that the A parameter could be forecasted with adequate precision from the CPT data with the usage of hybrid GOA - RF models. However, the RF model with soil features as input parameters results in a finer commentary of pile set-up parameters.

Small signal model and parameter extraction of SOI MOSFET's (SOI MOSFET's의 소신호 등가 모델과 변수 추출)

  • Lee, Byung-Jin;Park, Sung-Wook;Ohm, Woo-Yong
    • 전자공학회논문지 IE
    • /
    • v.44 no.2
    • /
    • pp.1-7
    • /
    • 2007
  • The increasing high frequency capabilities of CMOS have resulted in increased RF and analog design in CMOS. Design of RF and analog circuits depends critically on device S-parameter characteristics, magnitude of real and imaginary components and their behavior as a function of frequency. Utilization of scaled high performance CMOS technologies poses challenges as concerns for reliability degradation mechanisms increase. It is important to understand and quantify the effects of the reliability degradation mechanisms on the S-parameters and in turn on small signal model parameters. Various physical effects influencing small-signal parameters, especially the transconductance and capacitances and their degradation dependence, are discussed in detail. The measured S-parameters of H-gate and T-gate devices in a frequency range from 0.5GHz to 40GHz. All intrinsic and extrinsic parameters are extracted from S-parameters measurements at a single bias point in saturation. In this paper we discuss the analysis of the small signal equivalent circuits of RF SOI MOSFET's verificated for the purpose of exacting the change of parameter of small signal equivalent model followed by device flame.

Opportunistic Spectrum Access Using Optimal Control Policy in RF Energy Harvesting Cognitive Radio Networks (무선 에너지 하비스팅 인지 무선 네트워크에서 최적화 제어 정책을 이용한 선택적 스펙트럼 접근)

  • Jung, Jun Hee;Hwang, Yu Min;Cha, Gyeong Hyeon;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.3
    • /
    • pp.6-10
    • /
    • 2015
  • RF energy harvesting technology is a promising technology for generating the electrical power from ambient RF signal to operate low-power consumption devices(eg. sensor) in wireless communication networks. This paper, motivated by this and building upon existing CR(Cognitive Radio) network model, proposes a optimal control policy for RF energy harvesting CR networks model where secondary users that have low power consumption harvest ambient RF energy from transmission by nearby active primary users, while periodically sensing and opportunistically accessing the licensed spectrum to the primary user's network. We consider that primary users and secondary users are distributed as Poisson point processes and contact with their intended receivers at fixed distances. Finally we can derive the optimal frame duration, transmission power and density of secondary user from the proposed model that can maximize the secondary users's throughput under the given several conditions and suggest future directions of research.

Equivalent Circuit Model of RF passive components based on its simulated frequency response data (EM Solver 의 주파수 응답 데이터를 이용한 RF 수동 소자의 등가회로 모델링에 관한 연구)

  • Oh, Sang-Bae;Ko, Jae-Hyeong;Han, Hyeong-Seok;Kim, Hyeong-Seok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.27-30
    • /
    • 2007
  • This paper deals with an equivalent circuit model for RF passive components. Rational functions are obtained from the frequency responses of EM simulation by using Foster canonical partial fraction expressions. The Vector Fitting(VF) and the Adaptive Frequency Sampling(AFS) scheme are also implemented to obtain the rational functions. A passivity enforcement algorithm is applied to ensure the stability of the equivalent circuit model. In order to verify the schemes, S parameters of the equivalent circuit model is compared to those of EM simulation in case of the microstrip line structure with 3 slots in ground.

  • PDF

Covariance-based Recognition Using Machine Learning Model

  • Osman, Hassab Elgawi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.223-228
    • /
    • 2009
  • We propose an on-line machine learning approach for object recognition, where new images are continuously added and the recognition decision is made without delay. Random forest (RF) classifier has been extensively used as a generative model for classification and regression applications. We extend this technique for the task of building incremental component-based detector. First we employ object descriptor model based on bag of covariance matrices, to represent an object region then run our on-line RF learner to select object descriptors and to learn an object classifier. Experiments of the object recognition are provided to verify the effectiveness of the proposed approach. Results demonstrate that the propose model yields in object recognition performance comparable to the benchmark standard RF, AdaBoost, and SVM classifiers.

  • PDF

Modified SPICE BSIM3v3 Model for RF MOSFET IC Design (RF MOSFET IC 설계를 위한 수정된 SPICE BISM3v3 모델)

  • Kim, Jong-Hyuck;Lee, Seong-Hearn;Kim, Young-Wug
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.545-546
    • /
    • 2006
  • The improved model that external capacitances are connected to a conventional BSIM3v3 RF Macro model with Rg and Rsub is developed in this paper. The extracted external capacitances and resistances are modeled by scalable fitting equations. The modeled S-parameters of $0.13{\mu}m$ NMOSFET agree well with measured ones from 10MHz to 10GHz, verifying the accuracy of the improved model.

  • PDF