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Abstract—We propose an on-line machine learning approach
for object recognition, where new images are continuously added
and the recognition decision is made without delay. Random
forest (RF) classifier has been extensively used as a generative
model for classification and regression applications. We extend
this technique for the task of building incremental component-
based detector. First we employ object descriptor model based on
bag of covariance matrices, to represent an object region then run
our on-line RF learner to select object descriptors and to learn
an object classifier. Experiments of the object recognition are
provided to verify the effectiveness of the proposed approach.
Results demonstrate that the propose model yields in object
recognition performance comparable to the benchmark standard
RF, AdaBoost, and SVM classifiers.

Index Terms—Random forests (RFs), object recognition, His-
tograms, covariance descriptor

I. INTRODUCTION

Object recognition is one of the core problems in computer
vision, and it turns out to be extremely difficult for reproducing
in artificial devices, simulated or real. Specifically, an object
recognition system must be able to detect the presence or
absence of an object, under different illuminations, scales,
pose, and under differing amounts of background clutter. In
addition, the computational complexity is required to be kept
minimum, in order for those algorithms to be applicable for
real-life applications. Based on “strongly supervised” approach
and “weakly supervised” method (without using any ground
truth information or bounding box during the training), con-
siderable progress has been made for detection of objects.
Several studies also have shown that supervised component-
based approach is more robust to natural pose variations, than
the traditional global holistic approach. However, supervised
learning is usually carried out batch on the entire training
set, often is not optimal in a dynamic recognition tasks. In
this paper we consider instead how machine learning models
for object recognition categories, can be build ‘incrementally’
or ‘on-line’ so that new images are continuously added and
the recognition decision is made without delay. The process
consists of two stages. First we employ object descriptor model
based on bag of covariance matrices, to represent an image
window then run our on-line random forest (RF) learning
algorithm [5]. RF technique has been extend in this paper for
the task of building incremental component-based detector, for
attacking the problem of recognizing generic categories, such
as bikes, cars or persons purely from object descriptors that
combines histograms and appearance model. The rest of the
paper is organized as follow. We briefly give an overview of the
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Fig. 1. (i) Points sampled to calculate the LBP around a point (x, y). (ii)
Rectangles are examples of possible regions for histogram features. Stable
appearance in Rectangles A, B and C are good candidates for a car classifier
while regions D is not. (iii) Any region can be represented by A covariance
matrix representation of object. Second row shows an object represented with
five covariance matrices. The third row, an example of forest structure for a
given object. Each node of the tree corresponds to a separator and the leaves
correspond to a given object class. In our example, it can be seen that the tree
adapts the decision at each intermediate node (nonterminal) from the response
of the leaf nodes, which characterized by a vector (wi, Ci) with ‖wi‖ = 1.

object descriptors in Section II. Then in Section III we describe
our on-line RF. Section IV highlight on object recognition
using our proposed approach. A description of datasets and
experimental evaluation procedure is given in Section V. The
paper concludes with experimental results and brief discussion
in Section VI.

II. OBJECT DESCRIPTORS

A variety of exiting representations to object recognition,
range from aggregated statistics to appearance models, have
been extensively used in computer vision literature. Histograms
are among the most popular representations [7]–[12]. His-
tograms of Local Binary Patterns 1 (LBPs), although are
most commonly used for recognizing textures, they are also

1A LBP is a description of the intensity variation around the neighborhood
of a particular point in the grey-scale (intensity) version of an image.
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useful for capturing image statistics falling in an image region.
In similar popularity the well known Scale invariant feature
transform (SIFT) descriptor [9] and Shape Context [7] use
position-dependent histograms of Gaussian weighted gradient
orientations around scale invariant interest points. However,
histograms require a finite neighborhood which limits the
spatial resolution of features. Appearance models, on the other
hand, are highly sensitive to noise and shape distortions.
While many region-based descriptors were designed to achieve
invariance to local geometric transformation, these descriptors
are based on heuristic functions, they do not adapt to a
changing situations.

A. Our Approach

To overcome the above mentioned shortcomings in object
descriptors, we have used bag of covariance2 matrices, to
represent an object region. Let I be an input color image.
Let F be the dimensional feature image extracted from I

F (x, y) = φ(I, x, y) (1)

where the function φ can be any feature maps (such as
intensity, color, etc). For a given region R ⊂ F , let {zk}k=1···n
be the d dimensional feature points inside R. We represent the
region R with the d×d covariance matrix CR of feature points.

CR =
1

n− 1

n∑
k=1

(zk − µ)(zk − µ)T (2)

where µ is the mean of the point. Fig. 1 (i) depicts the
points that must be sampled around a particular point (x, y)
in order to calculate the LBP at (x, y). In our implementation,
each sample point lies at a distance of 2 pixels from (x, y),
instead of the traditional 3 × 3 rectangular neighborhood, we
sample neighborhood circularly with two different radii (1
and 3). The resulting operators are denoted by LBP8,1 and
LBP8,1+8,3, where subscripts tell the number of samples and
the neighborhood radii. In Fig. 1 (ii), different regions of
an object may have different descriptive power and hence,
difference impact on the learning and recognition.

B. Labeling the Image

We gradually build our knowledge of the image, from
features to covariance matrix to a bag of covariance matrices.
Our first step is to model each covariance matrix as a set
of image features. Next, we group covariance matrices that
are likely to share common label into a bag of covariance
matrices. We follow [17] and represent an image objects with
five covariance matrices Ci=1···5 of the feature computed inside
the object region, as shown in the second row of Fig.1. A
bag of covariance which is necessary a combination of Ohta
color space histogram (I1 = R + G + B/3, I2 = R − B,
I3 = (2G−R−B)/2), LBP and appearance model of different
features of an image window is presented in Fig.1 (iii). Then
estimate the bag of covariance matrix likelihoods and the like-
lihood that each bag of covariance matrices is homogeneously

2Basically, covariance is a measure of how much two variables vary
together.

labeled. We use this representation to automatically detect any
target in images. We then apply on-line RF learner to select
object descriptors and to learn an object classifier, as cab be
seen in the last row of Fig.1.

III. RANDOM FORESTS

A. RF Fundamentals

Details discussion of Breiman’s random forest (RF) [1]
learning algorithm is beyond the scope of this paper, however,
in order to simplify the further discussion, we will need to
define some fundamental terms:
Random Forests. Briefly, it is an ensemble of two sources of
randomness to generate base decision trees; bootstrap replica-
tion of instances for each tree and sampling a random subset
of features at each node. It is also enable different cues (such
as appearance and shape) to be combined [14].
Feature importance estimation. RF measures feature impor-
tance by randomly permuting the values of the feature f for the
out-of-bag3 (OOB) cases for tree k, if feature f is important
in the object detection, then the accuracy of the prediction
should decrease. On the other hand, we can consider the
accumulated reduction at nodes according to the criteria used
at the splits, an idea from the original CART [2] formulation.
Feature importance measures can be used to perform object
descriptors selection.
Decision tree. For the k-th tree, a random vector Ck is gener-
ated, independent of the past random vectors C1, . . . , Ck−1,
and a tree is grown using the training set of positive and
negative image I and covariance feature Ck. The decision
generated by a decision tree corresponds to a covariance
feature selected by learning algorithm. Each tree casts a unit
vote for a single matrix from the bag of covariance matrices.
Base classifier. Given a set of M decision trees, a base
classifier selects exactly one decision tree classifier from this
set, resulting in a classifier h (I, Ck).
Forest Given a set of N base classifiers, a forest is computed
as ensemble of these tree-generated base classifiers h (I, Ck),
k = 1, . . . , n. Finally, a forest detector is computed as a
majority vote.
Majority vote. For M decision trees, the majority voting
method will give a correct decision if at least floor(M/2)+1
decision trees gives correct outputs. If each tree has probability
p to make a correct decision, then the forest will have the
following probability P to make a correction decision.

P =
b∑

i=floor(M/2)+1

(
M
i

)
p(1− p) (3)

B. On-line Learning Random forest (RF)

To obtain an on-line algorithm, each of the steps described
above must be on-line, where the current classifier is updated
whenever a new sample arrives. In particular on-line RF [5]

3There is on average I/e ≈ 36.8 of instances not taking part in construction
of the tree, provides a good estimate of the generalization error.
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Algorithm 1 On-line Random Forests
1: Input: training set T , integer N (No. of bootstrap)
2: Use all available sample so far d to learn feature descrip-

tors.
3: Estimate the importance of feature incrementally.
4: Restrict d to the relevant features.
5: Train RF based on the restricted data d as follows.

——————————————-
6: Initially select the number K of trees to be generated.
7: for k = 1, 2, · · · ,K do
8: T̀ b̄ootstrap sample from T initialize e = 0, t = 0, Tk =

φ
9: Do until Tk = Nk

10: Vector Ck that represent a bag of covariance is generate
11: Construct Tree h (I, Ck) using any decision tree algo-

rithm
12: Each Tree makes its estimation based on a single matrix

from the bag of covariance matrices at I .
13: Each Tree casts a vote for most popular covariance

matrix at I
14: The popular covariance matrix at I at is predicted by

selecting the matrix with max votes over h1, h2, . . . , hk

15: = arg maxy

∑K
k=1 I(hk(x) = y)

16: Return a hypothesis hl

17: end for
18: Get the next sample set (x, y) in T̀ t ← t + 1 t (is the

number of sample sets examined in the process)
19: Output: Proximity measure, feature importance, a hypoth-

esis h.

(see Algorithm.1) works as follows: First, the fixed set tree K
is initialized. In contrast to off-line random forests, where the
root node always represents the object class in on-line mode,
for each training sample, the tree adapts the decision at each
intermediate node (nonterminal) from the response of the leaf
nodes, which characterized by a vector (wi, Ci) with ‖wi‖ =
1. Root node numbered as 1, the activation of two child nodes
2i and 2i+ 1 of node i is given as

u2i = ui.f(w
′

iI + Ci) (4)

u2i+1 = ui.f(−w
′

iI + Ci) (5)

where I is the input image, ui represents the activation of
node i, and f(.) is chosen as a sigmoidal function. Consider
a sigmoidal activation function f(.), the sum of the activation
of all leaf nodes is always unity provided that the root node
has unit activation. The forest consist of fully grown trees of a
certain depth l. The general performance of the on-line forests
depends on the depth of the tree. However, we found that the
number of trees one needs for good performance eventually
tails off as new data vectors are considered. Since after a
certain depth, the performance of on-line forest does not vary
to a great extent, the user may choose K (the number of trees
in forest) to be some fixed value or may allow it to grow up
to the maximum possible which is at most |T | /Nk, where Nk
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Fig. 2. A classifier is trained with positive (contains the object relevant to
the class) and negative (does not contain the object) examples. Each decision
tree makes its estimation based on a single matrix from the bag of covariance
matrices.

the tree size chosen by the user. Next, when detecting a new
instance, we first estimate the average margin of the trees on
the instances most similar to the new instance and then, after
discarding the trees with negative margin, weight the tree’s
votes with the margin. Then the set of classifiers is updated. For
updating, any on-line learning algorithm may be used, but we
employ a standard Karman filtering technique [6] to estimate
the distribution of positive and negative samples similar way
as we do in the off-line case.

IV. OBJECT RECOGNITION

Given a feature set and a sample set of positive (contains
the object relevant to the class) and negative (does not contain
the object) images, to detect a specific object, e.g. human,
in a given image, the main difficulty is to train a classifier
with relevant features toward accurate object recognition. The
adoption of RF learner and its ability to measure feature
importance relief us from this challenge. We train a random
forests learner (detector) offline using covariance descriptors
of positive and negative samples as shown in Fig. 2 (left
column). We start by evaluation feature from input image I
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Fig. 3. Examples from GRAZ02 dataset [3] for four different categories: bikes (1st pair), people (2nd pair), cars (3rd pair), and background (4th pair).

TABLE I
NUMBER OF IMAGES AND OBJECTS IN EACH CLASS IN THE GRAZ02

DATASET.

Dataset Images Objects
Bikes 373 511
Cars 420 770
Persons 460 785
Total 1253 2066

after the detector is scanned over it at multiple locations and
scales. This has to be done for each object. Then for feature
in I , we want to find corresponding covariance matrix for
estimating a decision tree. Each decision tree learner may
explore any feature f , we keep continuously accepting or
rejecting potential covariance matrices. We then apply the
on-line random forests at each candidate image window to
determine whether the window depicts the target object or not
as shown in Fig. 2 (right column). The on-line RF detector
was defined as a 2 stage problem, with 2 possible outputs
in each stage: In the first one, we build a detector that can
decide if the image contains an object, and thus must be
recognized, or if the image does not contain objects, and can
be discarded, saving processing time. In the second stage,
based on selected features the detector must decide which
object descriptor should be used. There are two parameters
controlling the learning recognition process: The depth of the
tree, and the least node. It is not clear how to select the depth
of the on-line forests. One alternative is to create a growing
on-line forests where we first start with an on-line forest of
depth one. Once it converges to a local optimum, we increase
the depth. Thus, we create our on-line forest by iteratively
increasing its depth.

V. EXPERIMENTS AND EVALUATION

To evaluate and validate our approach, we designed our
experiments in a way that we can answer the following
questions:

1) How does the performance of incrementally learning RF
compare to one trained batch on the entire training set?

2) Does the recognition performance improve it uses co-
variance matrices rather than adapting Histograms?

A. Dataset

To investigate the above questions we used data derived
from the GRAZ024 dataset [3], a collection of 640× 480 24-

4available at htt://www.emt.tugraz.at/pinz/data/

bit color images, run it against three state of the art classifiers
(offline RF, AdaBoost, and SVM (a single threshold network)).
As can be seen in Table I, GRAZ02 dataset has three object
classes, bikes (373 images), cars (420 images) and persons
(460 images), and a background class (270 images). Figure 3
illustrates the variability of this database with respect to scale
and clutter. Objects of interest are often occluded, and they
are not dominant in the image. According to [15] the average
ratio of object size to image size counted in number of pixels is
0.22 for bikes, 0.17 for people, and 0.9 for cars. Obviously this
dataset is more complex to learn detectors from, but of more
interest because it better reflects the real world complexity.

B. Experimental settings

For testing our framework we used the datasets described
above and run it against three state of the art classifiers (offline
RF, AdaBoost, and SVM). Each of the classifiers used in our
experimentation were trained with varying amounts (10%, 50%
and 90% respectively) of randomly selected training data. All
image not selected for the training split were put into the
test split. For the 10% training data experiments, 10% of the
image were selected randomly with the remainder used for
testing. This was repeated 20 times. For the 50% training
data experiments, stratified 5x2 fold cross validation was used.
Each cross validation selected 50% of the dataset for training
and tested the classifiers on the remaining 50%; the test and
training sets were then exchanged and the classifiers retrained
and retested. This process was repeated 5 times. Finally, for the
90% training data situation, stratified 1x10 fold cross validation
was performed, with the dataset divided into ten randomly
selected, equally sized subsets, with each subset being used
in turn for testing after the classifiers were trained on the
remaining nine subsets. For offline random forests, we train
detectors for bikes, cars and persons on 100 positive and 100
negative images (of which 50 are drawn from the other object
class and 50 from the background), and test on a similarly
distributed set.

VI. EXPERIMENTAL RESULTS

GRAZ02 images contain only one object category per
image so the recognition task can be seen as a binary classifi-
cation problem: bikes vs. background, people vs. background,
and car vs. background. The well known statistic measure;
the Area Under the ROC Curve (AUC) is used to measure
the classifiers performance in these object recognition experi-
ments. The AUC is a measure of classifier performance that is
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TABLE II
MEAN AUC PERFORMANCE OF FOUR CLASSIFIERS ON THE BIKES VS.

BACKGROUND DATASET, BY AMOUNT OF TRAINING DATA. PERFORMANCE
OF ON-LINE RF IS REPORTED FOR DIFFERENT DEPTHS

On-line RF with different depth (Dth) Offline AdaB SVM
Dth=3 Dth=4 Dth=5 Dth=6 Dth=7 RF

10% 0.85 0.86 0.81 0.85 0. 85 0.86 0.81 0.82
50% 0.91 0.90 0.89 0.91 0.92 0.90 0.89 0.90
90% 0.92 0.90 0.91 0.92 0. 92 0.91 0.90 0.91

independent of the threshold: it summarizes not the accuracy,
but how the true positive and false positive rate change as the
threshold gradually increases from 0.0 to 1.0. An ideal, perfect,
classifier has an AUC value 1.0 while a random classifier has
an AUC of 0.5.

A. Mean AUC Performance
Tables II, III, and IV give the mean AUC values across

all runs to 2 decimal places for each of the classifier and
training data amount combinations, for the bikes, cars ad
people datasets respectively. For on-line RF we report the
results for different depths of the tree. As can be seen, our
algorithm always performs significantly better than the offline
RF. We found that the differences in performance are (avg.
= 1.2± 15%), while our approach has achieved a number of
desirable properties: (1) it is incremental, in a sense that we are
able to add new categories incrementally making use of already
acquired knowledge, the model will continuously improve by
exploring more features and training data. If the process is
running for a long time, a lot of features are processed and
evaluated but still only a small number of features are sufficient
for updating. (2) it is adaptable, in a sense that the selection of
features and also the learning (we do not freeze the learning)
can change over time. Note that this kind of adaptation is not
possible in the standard random forests and the other batch
learning classifiers. The improvement when we varying the tree
depth are relatively small. This makes intuitive sense: when
an image is characterized by high geometric variability, it is
difficult to find useful global features.

B. A bag of covariance vs. Histograms
Another objective of the experiments was to determine

whether a bag of covariance matrices can improve the recog-
nition performance of histogram methods. Covariance features
are faster than the histogram since the dimensionality of the
space is smaller. The search time of an object in 24-bit color
image with size 640×480 24-bit color image is 8.5 with C++
implementation which yield near real time performance. We
noted that the standard deviation varies between ±2.0 ± 3.2,
which is considered quite high. The reason is the images in
the dataset vary greatly in their level of difficulty, so the per-
formance for any single run is dependent on the composition
of the training set.

VII. CONCLUSIONS

In this paper we have presented an on-line learning frame-
work for object recognition categories that avoids hand la-
beling of training data. We have demonstrated that on-line

TABLE III
MEAN AUC PERFORMANCE OF FOUR CLASSIFIERS ON THE CARS VS.

BACKGROUND DATASET, BY AMOUNT OF TRAINING DATA. PERFORMANCE
OF ON-LINE RF IS REPORTED FOR DIFFERENT DEPTHS

On-line RF with different depth (Dth) Offline AdaB SVM
Dth=3 Dth=4 Dth=5 Dth=6 Dth=7 RF

10% 0.77 0.79 0.75 0.78 0.73 0.79 0.75 0.73
50% 0.85 0.84 0.82 0.82 0.84 0.85 0.82 0.80
90% 0.86 0.82 0.83 0.85 0.86 0.85 0.83 0.82

TABLE IV
MEAN AUC PERFORMANCE OF FOUR CLASSIFIERS ON THE PERSONS VS.

BACKGROUND DATASET, BY AMOUNT OF TRAINING DATA. PERFORMANCE
OF ON-LINE RF IS REPORTED FOR DIFFERENT DEPTHS

On-line RF with different depth (Dth) Offline AdaB SVM
Dth=3 Dth=4 Dth=5 Dth=6 Dth=7 RF

10% 0.84 0.84 0.83 0.80 0.83 0.84 0.77 0.80
50% 0.88 0.86 0.88 0.88 0.88 0.88 0.84 0.86
90% 0.90 0.86 0.89 0.90 0.90 0.90 0.86 0.89

learning obtain comparable results to offline learning. More-
over, the proposed framework is quite general (i.e, it can
be used to learn completely different objects) and can be
extended in several ways. Although we assess the problem
of producing accurate object recognition in images, without
giving any prior information on object identities, orientation,
positions and scales, but we still far behind than proposing a
multi-general vision task algorithm but our hope is to design
a simple algorithm for learning appropriate context for object
recognition tasks in similar hierarchical and parallel processing
of human brain.
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