• Title/Summary/Keyword: RF Via

Search Result 207, Processing Time 0.03 seconds

Wafer-Level Three-Dimensional Monolithic Integration for Intelligent Wireless Terminals

  • Gutmann, R.J.;Zeng, A.Y.;Devarajan, S.;Lu, J.Q.;Rose, K.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.3
    • /
    • pp.196-203
    • /
    • 2004
  • A three-dimensional (3D) IC technology platform is presented for high-performance, low-cost heterogeneous integration of silicon ICs. The platform uses dielectric adhesive bonding of fully-processed wafer-to-wafer aligned ICs, followed by a three-step thinning process and copper damascene patterning to form inter-wafer interconnects. Daisy-chain inter-wafer via test structures and compatibility of the process steps with 130 nm CMOS sal devices and circuits indicate the viability of the process flow. Such 3D integration with through-die vias enables high functionality in intelligent wireless terminals, as vertical integration of processor, large memory, image sensors and RF/microwave transceivers can be achieved with silicon-based ICs (Si CMOS and/or SiGe BiCMOS). Two examples of such capability are highlighted: memory-intensive Si CMOS digital processors with large L2 caches and SiGe BiCMOS pipelined A/D converters. A comparison of wafer-level 3D integration 'lith system-on-a-chip (SoC) and system-in-a-package (SiP) implementations is presented.

Synthesis of 3D nanostructured flower-like ZnO architecture on ZnO thin-film by hydrothermal process (ZnO buffer 박막층 위에 성장된 3차원 ZnO 나노구조체의 합성)

  • Yoo, Beom-Keun;Park, Yong-Wook;Kang, Chong-Yoon;Kim, Jin-Sang;Cho, Doo-Jin;Yoon, Seok-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.248-248
    • /
    • 2009
  • Recently, the control of size, morphology and dimensionality in inorganic materials has been rapidly developed into a promising field in materials chemistry. 3D nanostructured flower-like ZnO architecture with different size and shapes have been simply synthesized via a hydrothermal process, using zinc acetate and ammonium hydroxide as reactants.[1] In this study, the Zno thin-films were deposited by RF magnetron sputtering in other to get high adhesion and uniformity of 3D nanostructured flower-like ZnO architecture on a $SiO_2$ substrate. The XRD patterns identified that the obtained the nanocrystallized ZnO architecture exhibited a wurtzite structure. SEM images illustrated that the flower-like ZnO bundles consisted of flower-like or chestnut bur, which were characterized by polycrystalline and [0001] preferential orientation.

  • PDF

Time Switching for Wireless Communications with Full-Duplex Relaying in Imperfect CSI Condition

  • Nguyen, Tan N.;Do, Dinh-Thuan;Tran, Phuong T.;Voznak, Miroslav
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4223-4239
    • /
    • 2016
  • In this paper, we consider an amplify-and-forward (AF) full-duplex relay network (FDRN) using simultaneous wireless information and power transfer, where a battery-free relay node harvests energy from the received radio frequency (RF) signals from a source node and uses the harvested energy to forward the source information to destination node. The time-switching relaying (TSR) protocol is studied, with the assumption that the channel state information (CSI) at the relay node is imperfect. We deliver a rigorous analysis of the outage probability of the proposed system. Based on the outage probability expressions, the optimal time switching factor are obtained via the numerical search method. The simulation and numerical results provide practical insights into the effect of various system parameters, such as the time switching factor, the noise power, the energy harvesting efficiency, and the channel estimation error on the performance of this network. It is also observed that for the imperfect CSI case, the proposed scheme still can provide acceptable outage performance given that the channel estimation error is bounded in a permissible interval.

Relation between Resistance and Capacitance in Atomically Dispersed Pt-SiO2 Thin Films for Multilevel Resistance Switching Memory (Pt 나노입자가 분산된 SiO2 박막의 저항-정전용량 관계)

  • Choi, Byung Joon
    • Korean Journal of Materials Research
    • /
    • v.25 no.9
    • /
    • pp.429-434
    • /
    • 2015
  • Resistance switching memory cells were fabricated using atomically dispersed Pt-$SiO_2$ thin film prepared via RF co-sputtering. The memory cell can switch between a low-resistance-state and a high-resistance-state reversibly and reproducibly through applying alternate voltage polarities. Percolated conducting paths are the origin of the low-resistance-state, while trapping electrons in the negative U-center in the Pt-$SiO_2$ interface cause the high-resistance-state. Intermediate resistance-states are obtained through controlling the compliance current, which can be applied to multi-level operation for high memory density. It is found that the resistance value is related to the capacitance of the memory cell: a 265-fold increase in resistance induces a 2.68-fold increase in capacitance. The exponential growth model of the conducting paths can explain the quantitative relationship of resistance-capacitance. The model states that the conducting path generated in the early stage requires a larger area than that generated in the last stage, which results in a larger decrease in the capacitance.

A Light-induced Threshold Voltage Instability Based on a Negative-U Center in a-IGZO TFTs with Different Oxygen Flow Rates

  • Kim, Jin-Seob;Kim, Yu-Mi;Jeong, Kwang-Seok;Yun, Ho-Jin;Yang, Seung-Dong;Kim, Seong-Hyeon;An, Jin-Un;Ko, Young-Uk;Lee, Ga-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.6
    • /
    • pp.315-319
    • /
    • 2014
  • In this paper, we investigate visible light stress instability in radio frequency (RF) sputtered a-IGZO thin film transistors (TFTs). The oxygen flow rate differs during deposition to control the concentration of oxygen vacancies, which is confirmed via RT PL. A negative shift is observed in the threshold voltage ($V_{TH}$) under illumination with/without the gate bias, and the amount of shift in $V_{TH}$ is proportional to the concentration of oxygen vacancies. This can be explained to be consistent with the ionization oxygen vacancy model where the instability in $V_{TH}$ under illumination is caused by the increase in the channel conductivity by electrons that are photo-generated from oxygen vacancies, and it is maintained after the illumination is removed due to the negative-U center properties.

The Underwater UUV Docking with 3D RF Signal Attenuation based Localization (UUV의 수중 도킹을 위한 전자기파 신호 기반의 위치인식 센서 개발)

  • Kwak, Kyungmin;Park, Daegil;Chung, Wan Kyun;Kim, Jinhyun
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.199-203
    • /
    • 2017
  • In this paper, we developed an underwater localization system for underwater robot docking using the electromagnetic wave attenuation model. Electromagnetic waves are generally known to be impossible to use in water environment. However, according to the conclusions of the previous studies on the attenuation characteristics in underwater, the attenuation pattern is uniform and its model was accurately proposed and verified in 3-dimensional space via the omnidirectional antenna. In this paper, a docking structure and localization sensor system are developed for a widely used cone type docking mechanism. First, we fabricated electromagnetic wave range sensor transmit modules. And a mobile sensor node is equipped with unmanned underwater vehicle(UUV)s. The mobile node senses the four different signal strength (RSS: Received Signal Strength) from fixed nodes, and the obtained RSS data are transformed to each distance information using the 3-Dimensional EM wave attenuation model. Then, the relative localization between the docking area and underwater robot can be achieved according to optimization algorithm. Finally, experimental results show the feasibility of the proposed localization system for the docking induction by comparing the errors in the actual position of the mobile node and the theoretical position through the model.

Polymer Thin Film of Phthalic Anhydride via Plasma Polymerization (플라즈마 중합에 의한 프탈릭 안하이드라이드 고분자 박막 필름 제조 연구)

  • Kang, Hyun Min;Basarir, Fevzian;Paek, Kwan Yeol;Yoon, Tae-Ho
    • Journal of Adhesion and Interface
    • /
    • v.10 no.1
    • /
    • pp.17-22
    • /
    • 2009
  • Polymer thin films were prepared by radio frequency (RF) plasma polymerization of phthalic anhydride (PA). First, monomer vaporization temperature ($100{\sim}160^{\circ}C$) was optimized by evaluating the thermal properties of thin films using differential scanning calorimeter (DSC) and measuring the root-mean-square (RMS) roughness with atomic force microscope (AFM) at the fixed plasma power of 10 W and time of 5 min in a continuous-wave (CW) mode. Plasma power (5~20 W) was then optimized by measuring the film solubility in solvents such as toluene, acetone, dimethylsulfoxide (DMSO) and 1 methylpyrrolidine (NMP). Next, pulsed mode plasma polymerization was also studied by varying the duty cycle of on-time (5, 20%) under optimized conditions of continuous-wave (CW) mode ($120^{\circ}C$, 10 W) in order to increase the anhydride functional groups. Finally, polymer thin films were characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analyzer (TGA) and ${\alpha}$-step.

  • PDF

Analysis of Joint Transmit and Receive Antenna Selection in CPM MIMO Systems

  • Lei, Guowei;Liu, Yuanan;Xiao, Xuefang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1425-1440
    • /
    • 2017
  • In wireless communications, antenna selection (AS) is a widely used method for reducing comparable cost of multiple RF chains in MIMO systems. As is well known, most of literatures on combining AS with MIMO techniques concern linear modulations such as phase shift keying (PSK) and quadrature amplitude modulation (QAM). The combination of CPM and MIMO has been considered an optimal choice that can improve its capacity without loss of power and spectrum efficiency. The aim of this paper is to investigate joint transmit and receive antenna selection (JTRAS) in CPM MIMO systems. Specifically, modified incremental and decremental JTRAS algorithms are proposed to adapt to arbitrary number of selected transmit or receive antennas. The computational complexity of several JTRAS algorithms is analyzed from the perspective of channel capacity. As a comparison, the performances of bit error rate (BER) and spectral efficiency are evaluated via simulations. Moreover, computational complexity of the JTRAS algorithms is simulated in the end. It is inferred from discussions that both incremental JTRAS and decremental JTRAS perform close to optimal JTRAS in BER and spectral efficiency. In the sense of practical scenarios, adaptive JTRAS can be employed to well tradeoff performance and computational complexity.

Neural Network Modeling of PECVD SiN Films and Its Optimization Using Genetic Algorithms

  • Han, Seung-Soo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.87-94
    • /
    • 2001
  • Silicon nitride films grown by plasma-enhanced chemical vapor deposition (PECVD) are useful for a variety of applications, including anti-reflecting coatings in solar cells, passivation layers, dielectric layers in metal/insulator structures, and diffusion masks. PECVD systems are controlled by many operating variables, including RF power, pressure, gas flow rate, reactant composition, and substrate temperature. The wide variety of processing conditions, as well as the complex nature of particle dynamics within a plasma, makes tailoring SiN film properties very challenging, since it is difficult to determine the exact relationship between desired film properties and controllable deposition conditions. In this study, SiN PECVD modeling using optimized neural networks has been investigated. The deposition of SiN was characterized via a central composite experimental design, and data from this experiment was used to train and optimize feed-forward neural networks using the back-propagation algorithm. From these neural process models, the effect of deposition conditions on film properties has been studied. A recipe synthesis (optimization) procedure was then performed using the optimized neural network models to generate the necessary deposition conditions to obtain several novel film qualities including high charge density and long lifetime. This optimization procedure utilized genetic algorithms, hybrid combinations of genetic algorithm and Powells algorithm, and hybrid combinations of genetic algorithm and simplex algorithm. Recipes predicted by these techniques were verified by experiment, and the performance of each optimization method are compared. It was found that the hybrid combinations of genetic algorithm and simplex algorithm generated recipes produced films of superior quality.

  • PDF

Implementation of Quad-Band p-HEMT SP6T Switch for Handset Applications (개인 휴대통신용 4중대역 p-HEMT SR6T 스위치 구현)

  • Shin, One-Chul;Jeong, In-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.1
    • /
    • pp.97-101
    • /
    • 2011
  • Quad band p-HEMT SP6T switch for handset applications was developed. To achieve the low insertion loss and high isolation, trade-off between "On" state and "Off" state was considered by optimization of unit cell. Especially, in case isolation between transmit port and receive port, it was achieved by large capacitors and miniaturization of chip size was achieved by common voltage control and ground using back via process. Designed SP6T switch has size of $950um{\times}100um$ and take into consideration the gate recess error, excellent loss and isolation was confirmed in operating frequency.