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Abstract

Silicon nitride films grown by plasma-enhanced chemical vapor deposition (PECVD) are useful for a varicty of applications, including
anti-reflecting coatings in solar cells, passivation layers, dielectric layers in metal/insulator structures, and diffusion masks. PECVD systems are
controlled by many operating variables, including RF power, pressure, gas flow rate, reactant composition, and substrate temperature. The wide
variety of processing conditions, as well as the complex nature of particle dynamics within a plasma, makes tailoring SiN film properties very
challenging, since il is dilficult to delermine the exact relationship between desired film properties and controllable deposilion conditions. In
this study, $SiN PECVD modeling using optimized neural networks has been investigated. The deposition of SiN was characterized via a
central composite experimental design, and data from this experiment was used 1o irain and optimize feed-forward neural networks using the
back-propagation algorithm. From these neural process models, the effect of deposition conditions on film propertics has been studied. A
recipe synthesis (optimization) procedure was then performed using the optimized neural network models to generate the necessary deposition
conditions to obtain several novel film qualities including high charge density and long lifetime. This optimization proccdure ufilized genetic
algorithms, hybrid combinations of genetic algorithm and Powell's algorittun, and hybrid combinations of genetic algorithm and simplex
algorithm. Recipes predicted by these techniques were verified by experiment, and the performance of each optimization method are compared.
It was found that the hybrid combinations of genetic algorithm and simplex algorithm generated recipes produced films of superior quality.
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| . Introduction and composition of the plasma, which are in tum
controlled by the deposition variables. As a consequence
Silicon nitride films grown by plasma-enhanced of the complex nature the plasma, however, it is very
chemical vapor deposition (PECVD) are useful for a difficult to quantify from first principles the exact
variety of applications, including anti-reflection coatings relationship between input factors (such as substrate
in solar cells, passivation layers, dielectric layers in temperature, pressure, RF power, and gas flows) and
metal/insulator structures, and diffusion masks. Recent critical output parameters (such as reflective index,
studies have indicated that the use of silicon nitride films effective lifetime, and positive charges). Although
grown by PECVD as antireflection coatings in polysilicon empirical models for plasma-based and  other
solar cells can be beneficial in improving cell efficiency semiconductor processes have been developed using
[1-3]. In addition to serving as antireflection coatings, statistical response surface methods [4], process models
these films also enhance cell performance by passivating derived from neural networks have recently been shown
the device surface by introducing significant amounts of to offer advantages in both learning accuracy and
atomic hydrogen, which is produced during the PECVD generalization capability.
process [1-2]. Thus, PECVD not only provides the Himmel and May reported 40-70% improvement in
obvious advantage of low deposition temperature, but the experimental error, as well as nearly a 40% improvement
SiN film can also be used to avoid defect formation, in generalization by neural nets over statistical models in

diffusion, and degradation of the surface metal layer. plasma etching [5]. Similarly, Mocella et. al. [6] and
Furthermore, the PECVD) process possesses a number of ~ Huang et. al. [7] each also found that neural nets

other qualities which are attractive from a manufacturing consistently produced models exhibiting befter fit than
standpoint, including high throughput, very good several variations of response surface models in the
uniformity and thickness control, and excellent repro- plasma etch application. Bose and Lord demonstrated that
ducibility [3]. neural networks provided appreciably better generalization

The nitride film properties are determined by the nature than regression based methods for chemical vapor

deposition modeling [8]. Furthermore, both Himmel and
Mocella found that building these neural process models
requires fewer training experiments [5-6], and Huang et.
al. showed that it is possible to develop satifactory
models from even fewer experimental data than there are
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coefficients in the neural network [7].

This paper seeks to build upon this body of work, and
use neural networks to develop obtain accurate and useful
manufacturing models for the PECVD of silicon nitride
films. In order to characterize films deposition under
varying conditions, we have performed a central
composite circumscribed experimental design. The ceniral
composite design employed consisted of a 26-1 fractional
factorial augmented by 12 axial points and three center
points [9]. Data from these 47 experiments was used to
develop neural process models describing the following
deposition responses and film qualities: deposition rate,
reflective index, uniformity, effective carrier lifetime, and
hydrogen content. Feed-forward neural networks were
trained using the error back-propagation (BP) algorithm.

The development of optimal neural process model is
complicated by the fact that back-propagation neural
networks contain several adjustable parameters whose
optimal values are initially unknown. These include
structural parameters (such as the number of hidden layer
neurons) as well as BP leaming parameters (i.e. - learning
rate, momentum, and training tolerance) [10]. Tn this
paper, mneural process models for PECVD were first
developed using a default parameter set. The effect of
these factors on network performance was also
subsequently investigated via a fractional factorial
experiment. The results were analyzed using commercial
statistical software package, RS/Discover [11], and
parameter sets which minimized the training and
prediction error of the SizNy PECVD models were
determined [12]. Examination of the resulting process
models indicates that there exists a significant positive
correlation between hydrogen concentration and effective
lifetime. The models developed also show that pressure
and RF power have less impact on the quality of the
nitride film than temperature and ammonia and silane
flow rate.

I1. Experimental Procedure

The silicon nitride films investigated were deposited
using ammonia (NHz), silane (SiHy), and nitrogen as feed
gases. The deposition conditions were varied in a central
composite circumscribed design [9] array over the ranges
shown in Table 1. Three-inch, float zone p-type silicon
wafers, with a (100) orientation and a resistivity of 2.0
Q-cm, were used as the substrates. The wafers were
thoroughly cleaned using the following process:

DI water rinse 3 min.
HQSO4:H202 = 4:1 4 min.
DI water rinse 3 min.
HNOs:HF = 20:1 3 min.
DI water rinse 3 min.
HCLHO;, = 5:2 (100 T) 20 min.
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DI water rinse 3 min.
HF:H202 = 1:100 5 min.
DI water rinse 10 min.

Table 1. Ranges ol deposition parameters

Parameter Range
Substrate "l“emp-c.:r;mrc 200 - 400 C
Pressure 0.6 - 1.2 Torr
RF Power 20 - 40 watt
NH; Flow I - 1.4 sccm
SiH; Flow 180 - 260 sccm
N, Flow 0 - 1000 scem

After cleaning, the wafers were blow dry using
nitrogen gas. Each three inch wafer was then cut into
four pieces and subjected to PECVD silicon nitride
deposition. During the deposition, SiH4 was diluted to
2% in nitrogen. Following the deposition of
approximately 0.05 zm of silicon nitride, the samples to
be used for effective lifetime and positive charge
concentration measurements underwent annealing at 330
C for 20 minutes.

To facilitate the measurement of positive charge
concentration, capacitors were made on these samples.
The thickness and refractive index of the films were
measured by cllipsometry by a helium-neon laser having
a wavelength of 6328A. The positive charge
concentration was obtained using C-V mcasurements. The
effective  lifetime was measured wusing a laser
photoconductive decay (PCD) tester. In this technique,
laser light falls on the silicon samples under test and
generates electron-hole pairs. The duration of the pulse is
short compared with the expected lifetime of the charge
carriers. These holes and electrons increase the sample
conductivity. The additional charge carriers produced by
the incident light recombine once the light is removed.
Those excess carriers do not recombine instantaneously,
but decay in concentration according to:

M 1) = Nyexp( )

¢
Teff

where N(t) is carrier concentration at the time t, NO is
the initial carrier concentration, and r, is effective
lifetime. The starting bulk lifetime prior to annealing was
measured as 1.2 ms wsing this technique. A central
composite circumscribed experimental design was used to
characterize film deposition. This design employed
consisted of 26-1 fractional factorial augmented by 12
axial points and three center points. Based on data
obtained from these 47 experimental trials, three-layer
neural network models were ftrained using error

back-propagation algorithim.
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lll. Neural Process Modeling

As mentioned above, the highly complex particle

interactions within a plasma have limited the success of

PECVD modeling from a fundamental physical standpoint.
Recently, however, neural networks have emerged as an
attractive  alternative to physically-based models and
glatistical methods [5-8]. Newral networks possess the
capability of learning arbitrary nonlinear mappings
between noisy sets of input and output patterns. Neural
network learmning is a "self-organizing" process designed
to determine an appropriate set of connection strengths
which facilitate the activation of many simple parallel
processing units to achieve a desired state that mimics a
given set of sampled patterns. In other words, these
rudimentary processors (called "neurons") are inter-
connected in such a way that knowledge is stored in the
weight of the connections between them. The activation
level of a neuron is determined by a sigmoidal "activation
function” such as:

1
1+e ™"

y=

where x is the weighted sum of neural inputs and v is
the output of an individual neuron. This nonlinear
activation finction enables newral networks to generalize
with an degree of freedom not available in statistical
regression techniques [5]. Feed-forward neural networks
used for semiconductor process modeling are trained via
error back-propagation, a supervised leaming method [13].
In this algorithm, the network begins with a random set
of weights. An input vector is presented to the network,
and the output is calculated by summing the weighted
input connections of each layer and filtering this sum
with the sigmoidal activation function. The calculated
output is then compared to the measured output data, and
the squared difference between these two  vectors
determines system error. This error is then minimized
using the gradient descent approach in which weights are
adjusted in such a way as to minimize the overall system
error.

3.1 Network Structure and Learning

Individual neurons in a BP neural network receive,
process, and transmit information regarding the
relationships between mput and output pairs. The input
layer of neurons corresponds to the six adjustable mput
parameters which are varied in the PECVD experiment.
The output layer corresponds to the deposition variables
to be modeled. The network also incorporates one
hiddent layer of neurons which assist the network in
learning the mnonlingar mapping between the input and
output layers. Conceptually, the hidden layer neurons can
be viewed as representing fundamental, yet not directly
controllable plasma properties such as electron tem-
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perature or reactive species concentration.

In the BP training algorithm, model performance is
influenced by both the number of hidden layers and the
number of neurons in each layer. It has been previously
shown that an BP network containing a single hidden
layer can encode any arbitrarily complex input-output
relationship [14]. Therefore, in order to determine the
optimal network structure for PECVD modeling, the
number of layers has been fixed to three, and only the
number of neurons in the hidden layer has been varied. A
large number of hidden neurons is required to model
complex relationships, but too many can result in an
over-trained network and render it incapable of
generalizing input/output relationships that differ from the
training samples.

The performance of BP networks in process modeling
also depend on parameters such as learning rate,
momentum, and training tolerance [10]. The learning rate
(7) determines the speed of convergence by regulating
the step size. However, the network may settle too far
from the actual minimum value of the error surface if h
gets too large. On the other hand, smaller rates can
ensure the stability of the network by diminishing the
gradient of noise in the weights, but results in longer
training time. The momentum term in the weight
adjustment expression is designed to prevent the training
algorithm from seftling in local minima, and also
increases the speed of convergence. This additional term,
computed adding a fraction of the previous weight
change, tends to keep the weight changes going in the
same direction. Another important parameter is network
training tolerance. This parameter specifies an acceptable
tolerance for the accuracy of the neural outputs. A
smaller training tolerance usually increases learning
accuracy, but can result in less generalization capability
as well as longer training time. Conversely, a larger
tolerance enhances convergence speed at the expense of
accuracy in leaming. A procedure for choosing the
learning rate, momentum, and training tolerance is
outlined below.

3.2 Network Optimization

Since there were six controllable input parameters and
three measured output characteristics in this Si3N4
PECVD experiment, the number of neurons in the input
and output layers were set to six and three, respectively.
In optimizing the neural process models, four parameters
were congidered: number of hidden neurons, learning rate,
momentum, and training tolerance. Initlally, neural
PECVD models were obtained using a set of default
network structure and set of learning parameters. These
rough models were then refined by varying the values of
the four critical parameters according to a 24-1 fractional
factorial design and analyzing the results using
RS/Discover [11]. The experimental ranges of each
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parameter and their default values are summarized in
Table 2.

Table 2. Ranges of neural network papameters

Parameters Range Default Value
No. Hidden Neuron 6 - 10 &
Leaming Rate 0.05 - 0.5 0.275
Momentum 0-04 0.2
Training Tolerance 0.0l - 0.13 0.07

In varying the above factors, two important cha-
racteristics of neural process models have been inve-
stigated: network learning ability and prediction capability.
These performance metrics are quantified in terms of their
root-mean-squared (RMS) error (¢ 2), given by:

P=

LT 25
where n is the number of trials, yi is the measured
value of each response, and 3, is the corresponding
neural process model prediction. In evaluating learning (or
training) error, n ranges over the number of trials used to
build the model. As for prediction error on the other
hand, n represents some number of test trials apart from
the original training set. The prediction error in this
experiment was determined by using the trained networks
to predict the nitride film properties for ten of the
original 47 experimental nuns selected at random.

To search for parameter values which minimized both
training error and prediction error, the following
performance index (PI) was implemented for each of the
seven PECVD output responses:

PI= K0, + Ko,

where o, is the network training error, o, is the
prediction error. The constants K; and K, are weights
representing the relative importance of each performance
measure. Since the prediction error is typically the more
important quality characteristic, the values chosen for
these constants were K; = 1, and K, = 10. Optimization
of the neural process models was then performed using
Nelder-Mead simplex search algorithm [15] to minimize
the performance index itself. This objective is to
determine a network architecture and parameter set which
simultaneously minimizes both training and prediction
error based their relative importance [12]. The resulting
optimal values for the BP training parameters, training
error, and prediction error for each of the five PECVD

-~

process models is shown in Table 3.
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Table 3. Optimized network parameters and network error

PECVD | Hidden | Learning| Moment- | Toler- | Trainin | Predictio
Response | Neuron | Rate um ance |g Error| n Error
Effective
Lifetime 6 0.05 0 0.01 | 1054 16.09
(us)
Positive
Charge
(1012/em 10 0.05 0 0.13 | 0372 | 0556
2)
Izeifgg 6 | 007 0 | 013 | 0074 009

IV. Modeling Results and Discussion

The motivation for choosing effective lifetime, positive
charge, and refractive index as response variables to
characterize is as follows. Effective lifetime is one of the
most important measures of solar cell performance
because cell efficiency greatly depends on the lifetime.
Long effective lifetime results in high efficiency [16-17].
Positive charge concentration in silicon nitride film
impacts the effective lifetime of a conventional solar cell,
and is of critical importance for metal- insulator-
semiconductor (MIS) inversion solar cells [18]. High
positive charge concentration not only improves the
surface passivation of a solar cell (which leads to longer
effective lifetime), but also results in stronger inversion
and low sheet resistance in MIS inversion cells. Finally,
the refractive index of a Si3N4 film is also an important
measure of solar cell performance. In order to achieve
high efficiency solar cells, the refractive index has to be
so chosen that the total reflection on the front surface is
minimized [3]. The refractive index of the PECVD Si3N4
films deposited under different conditions can vary from
1.54 to 2.96.

A discussion of the changes in these three critical
pitride film properties as a function of substrate
temperahwre, RF power, pressure, and gas flow is
therefore warranted. Feeding various combinations of
process conditions into the trained neural network allows
relationships between input and outputs parameters to be
visualized using three dimensional graphics. The various
relationships extracted from the neural process models of
PECVD silicon nitride are described in detail below.

4.1 Temperature and Pressure Effects

Figure 1 shows the effect of pressure and temperature
on the refractive index of the PECVD nitride films. It is
clear that- both substrate temperature and plasma pressure
have a significant impact. Increasing substrate temperature
and chamber pressure results in a higher refractive index.
This occurs partly due to the fact that a higher
temperature increases the desorption of radicals on the
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Fig. 1. Refractive index vs. temperature and
pressure
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Fig. 2. Effective lifetime vs. temperative and
pressure

surface and promotes the rearrangement of the species on
the surface of the substrate. Therefore, a high substrate
temperature allows the formation of a denser film which
in tumn results in a higher refractive index. The chamber
pressure determines the mean free path of electrons
colliding with the gas molecules. Higher pressure results
in a shorter mean free path and lowers the electron
temperature. Therefore, the reaction proceeds incompletely
and more excess silicon is incorporated in the film, which
results in higher refractive index.

Figure 2 shows the effective carmrier lifetime of the
samples as a fimction of temperature and pressure. It can
be seen that increasing the substrate temperafure increases
the lifetime, while pressure has less of an effect. Effective
lifetime is a measure of the quality of the bulk and
surface passivation. For a given bulk lifetime, high
effective lifetime means better passivation. For the
samples processed at lower temperatures, the bulk lifetime
is not affected.

The effect of temperature and pressure on the positive
charge concentration in the silicon nitride film is shown
in Figure 3, which exhibits similar trends as effective
lifetime. Positive charge stems from dangling Si+ or NH+
bonds in the film, the presence of which can be reduced
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by increased atomic hydrogen. It is known that an
increase in deposition temperature results in less bonded
hydrogen [19], which therefore increases the positive
charge density. It has also been predicted that the amount
of positive charge in silicon nitride film is closely related
to the surface quality - higher concentration yields better
surface passivation and therefore, longer lifetime [20]. For
the first time, these models show a correlation between
effective lifetime of a sample and positive charge
concentration in the silicon nitride film. This correlation
is further supported by Figures 4 and 5 which show the
effect of temperature and RF power on effective lifetime
and positive charge concentration (see below).

RF Power=30 watt, NH,=1.2 scem, 5iH,=220 scem, N;=500 scem

Charge
Densiy
(cm-2)

Pressure
(torr)

260
Temperature

() 200046

Fig. 3. Positive charge density vs. temperature and
pressure

4.2 Effect of Temperature and RF Power

Figure 4 shows the effect of substrate temperature and
RF power on the effective lifetime. Tt can be seen that
the effective lifetime increases with temperature, but
varies only slightly with RF power. It is known that
higher substrate temperature results in higher quality
silicon nitride films, therefore leading to befter
passivation. This explains why high deposition
temperatures have been widely used for silicon nitride
coatings in solar cells.

RF power determines the level of ion bombardment.
Higher RF power increases the amount of bombardment
by more epergetic ions. This causes a greater number of
collisions as the ions are accelerated through the plasma
sheath. Increased levels of ion bombardment also aid the
removal of reaction by-products from the substrate
surface. With increasing power, therefore, films that are
denser and more structurally and chemically homogeneous
are deposited, which results in better passivation.
However, increasing ion bombardment too much can
damage the silicon surface, which leads to reduction of
the lifetime. Overall, though, the RF power has less effect
on the lifetime than temperature. Figure 5 shows positive
charge concentration in the silicon nitride film as a
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function substrate temperature and RF  power. A
comparison of Figures 4 and 5 once again shows a
correlation between the amount of positive charge and the
effective lifetime.

Pressure=0.9 torr, MHy=1 2 scem, $1H,=220 scem, N-=300 scem

260
Temperawre
(€3]

Fig. 4. Effective lifetime vs. temperature and RF
power
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260
Temperature
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Fig. 5. Positive charge density vs. temperature and
RF power

4.3 Effects of Ammonia and Silane

It is well known that the ratio of ammonia to silane
strongly affects the refractive index of silicon nitride films
deposited by the plasma enhanced chemical vapor
deposition technique [21]. By using the neural network
models of the PEVCD process, the relationship between
ammonia and silane and their combined effect on
refractive index may be observed (Figure 6). Compared to
ammonia, silane has a greater effect on the refractive
index of the film in the experimental range of gas flow
investigated. For an ammonia flow rate below 1.2 sccm,
the refractive index increases rapidly with the increase of
silane and then saturates, while for an ammonia flow rate
above 1.2, the refractive index increases with silane flow
without exhibiting saturation.

Figure 7 shows the effect of ammonia and silane on
the effective lifetime. A strong interaction is observed.
Increases in either ammonia or silane flow increases the
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Fig, 7. Effective lifetime vs. ammonia and silane flow
rate

effective lifetime of the samples. The improvement of the
lifetime can also be explained by surface passivation.
During the PECVD process, silane and ammonia are
dissociated into radicals and atomic hydrogen. Atomic
hydrogen passivates the dangling bonds on the surface of
silicon substrate, and therefore, improves the effective
lifetime.

V. Recipe Synthesis (Optimization)

Recipe synthesis procedures using genetic algorithms
were successfully applied to PECVD silicon dioxide
models, thereby providing motivation for their use in
silicon nitride growth. In the silicon nitride application,
genetic  algorithms, hybrid combinations of genetic
algorithms and Powell's, and of genetic algorithms and
the simplex algorithm are used as recipe synthesis
procedures. The desired ouwtput characteristic of the
PECVD SiN film to be produced are reflected by the
following fitness function (F):

1
1+ Zy]lKr(yd—y)l
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where r is the number of process responses, Kr are the
weights of process responses, yd are the desired process
responses, and y are the process outputs dictated by the
current choice of input parameters. Maximization of F
continued until a final solution was selected after 500 GA
generations. In the other methods, the optimization
stopped when F was within a predefined tolerance. For
genetic  algorithms, the probabilities of crossover and
mutation were set to 0.6 and 0.01, respectively. A
population size of 100 was used in each generation. Each
of the six process input parameters were coded as 40-bit
string, resulting in a total chromosome length of 240 bits.
The wvalues of reflection coefficient( ), contraction
coefficient (), and expansion coefficient (7 ) were set
to 1, 0.5, 2, respectively for the simplex algorithm. In
both hybrid methods, the genetic algorithms stopped at 30
generations and handed over the resulting solution as the
initial point of the simplex algorithm or Powell algorithm.

In this recipe synthesis procedure, the optimal
deposition recipes for the high charge density and long
lifetime were determined. To achieve these goals, the
neural network process models were trained for one
response, and then the three previously mentioned recipe
synthesis procedures were applied to determine the
required deposition conditions. Tables 4-5 show the
recipes synthesized using each of these three methods,
along with simulation results predicted by the neural
process model using these recipes as imputs and actual
measured values of the responses for the grown film.

If we compare the results with typical values of charge
density (typically less than 3.5x1012/cm2) and lifetime
(typically less than 120 x«s), we can see that the film
deposited  with  optimized recipes have improved
propertics. For the charge density recipes, all the three
methods generated recipes with high temperature, medium
pressure and medium power. These followed the trend
shown in Figures 3 and 5. In Figures 2 and 4, longer
effective lifetime goes longer with higher temperature,
low pressure, and medium RF power. The generated
recipes for longer lifetime also follow these trends. Figure
7 shows that higher ammonia flow rate and higher silane
flow rate lead to longer lifetime, but the gencrated recipes
show lower ammonia flow rate and medium silane flow
rate produce longer effective lifetime. The reason for this
is that the effects of temperature, RF power, and pressure
are more significant than those of the gas flow rates. For
both charge density and effective lifetime optimization,
the films deposited with GA-generated recipes have
higher charge density and longer lifetime than the films
deposited with the other two hybrid methods.
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Table 4. Synthesized recipes for high charge density
(1012/cm?2) and experimental data

” \ Simulation | Experimental
Method | Temp. |Power| Pressure | NH3 | 8iH4 | N2 Resulis Results
237.8 |492.1
GA 298 | 32 0.82 | 1.40 3; 8 97 5.29 5.11
> =
GA& | o99 | 31 | sz [140| 20815 530 5.04
Simplex 6 2
GA & 240.1 |507.9 -
2 A . 2 .04
Powell 288 34 0.80 1.39 a g 524 3.0

Table 5. Synthesized recipes for long lifetime (. s) and
experimental data

Metho Powe| Pressur . Simulatio | Experiment
A i
d Temp. r e NH3 | SiH4| N2 n Results| al Resulis
2084| . .
GA | 300 | 40 0.60 |1.01 3 5.83| 170.06 160
0A & 202.1
Simple| 300 | 40 0.60 |1.08 8' 5,15] 168.53 156
X
2
GA & 299 | 40 | 0.61 |1.06 213.71162 16735 154
Powell 0 4

Vl. Couclusions

The properties of PECVD silicon nitride films have
been modeled using optimized back-propagation neurat
networks. The PECVD process was characterized by
varying six controllable parameters in a central composite
experimental design. BP neural networks were trained,
and later optimized, to predict three key PECVD output
responses. The optimized networks were then used to
visualize the effects on each output of input parameters
using three dimensional graphics. These models were also
used to determine the optimal process conditions
necessary to grow films which result in higher charge
density and longer lifetime. The synthesized recipes were
verified via actual experiments, and the results show the
film deposited with optimized recipes have higher charge
density and longer lifetime than the film deposited with
typical recipes.
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