• Title/Summary/Keyword: RF Modeling

Search Result 190, Processing Time 0.035 seconds

Modeling of Memory Effects in Power Amplifiers Using Advanced Three-Box Model with Memory Polynomial (전력 증폭기의 메모리 효과 모델링을 위한 메모리 다항식을 이용한 향상된 Three-Box 모델)

  • Ku Hyun-Chul;Lee Kang-Yoon;Hur Jeong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.5 s.108
    • /
    • pp.408-415
    • /
    • 2006
  • This paper suggests an improved system-level model of RF power amplifiers(PAs) including memory effects, and validates the suggested model by analyzing the power spectral density of the output signal with a predistortion linearizer. The original three-box(Wiener-Hammerstein) model uses input and output filters to capture RF frequency response of PAs. The adjacent spectral regrowth that occurs in three-box model can be perfectly removed by Hammerstein structure predistorter. However, the predistorter based on Hammerstein structure achieves limited performance in real PA applications due to other memory effects except RF frequency response. The spectrum of the output signal can be predicted accurately using the suggested model that changes a memoryless block in a three-box model with a memory polynomial. The proposed model accurately predicts the output spectrum density of PA with Hammerstein structure predistorter with less than 2 dB errors over ${\pm}30$ MHz adjacent channel ranges for IEEE 802.11 g WLAN signal.

Equivalent Parameter Modeling of Open Ring type DGS Resonator (분리된 링형 DGS 공진기의 등가 파라미터 모델링)

  • Mun, Seung-Min;Kim, Gi-Rae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.10
    • /
    • pp.1175-1180
    • /
    • 2014
  • In this paper, the open ring type DGS(Defected Ground Structure) resonator, applicable to MMIC(Monolithic Microwave Integrated Circuit), is proposed to improve phase noise characteristics of RF oscillator. This resonator is planar type, therefore, it easy to design miniaturrized., and takes relatively high Q value. Modeling the equivalent parameter of resonator is needed, when designing the RF oscillator with resonator. The mathematical method to solve the equivalent parameter of the resonator from the measured results of resonator is introduced in this paper. To verify the method, DGS resonator with 5.8 GHz center frequency is fabricated, for measuring characteristics and calculating the equivalent parameter. The result from this process is compared with the data of the ADS simulation, and as a result both were identical.

Modeling and Optimization of $sub-0.1\;{\mu}m$ gate Metamorphic High Electron Mobility Transistors ($0.1\;{\mu}m$ 이하의 게이트 길이를 갖는 Metamorphic High Electron Mobility Transistor의 모델링 및 구조 최적화)

  • Han Min;Kim Sam-Dong;Rhee Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.3 s.333
    • /
    • pp.1-8
    • /
    • 2005
  • In this paper, we analyzed the DC and RF characteristics of $0.1\;{\mu}m$ metamorphic high electron mobility transistor (MHEMT) using the ISE-TCAD simulation tool. we also analyzed the effects or the scaling on vertical and lateral dimensions such as a gate length, source-drain spacing, and channel thickness. We discussed the degradation of extrinsic transconductance $g_{m,max}$ in the MHEMTs adopting the gate length $(L_g)$ of $sub-0.1\;{\mu}m$. We suggested the model describing the effects on the vertical and lateral parameter scaling.

Analysis and Design of the In-Rush Current Protection Circuit for SSPA Power Supply (SSPA용 전원공급기의 돌입전류 보호회로 분석 및 설계)

  • Park, Sang-Hyun;Park, Dong-Chul;Kim, Dae-Kwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.5-11
    • /
    • 2008
  • Recently developed radars use the solid-state power amplifier to amplify the RF signal. The stability of RF signal directly depends on that of the electric power. So the stable and reliable electric power should be needed. When the electric power switch is tuned on for the first time in order to operate the radar system, the in-rush current is generated because of the capacitive characteristic. The excess in-rush current breaks the element. Therefore, the analysis about the in-rush current to design the electric power system is necessary. In this paper, modeling and simulation on the whole power system is carried out and the necessity of limiting the in-rush current is verified. After the analysis, the circuit to limit the in-rush current is designed and examined to verify the analysis. The circuit is good enough to limit the in-rush current.

Simulation of 4H-SiC MESFET for High Power and High Frequency Response

  • Chattopadhyay, S.N.;Pandey, P.;Overton, C.B.;Krishnamoorthy, S.;Leong, S.K.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.3
    • /
    • pp.251-263
    • /
    • 2008
  • In this paper, we report an analytical modeling and 2-D Synopsys Sentaurus TCAD simulation of ion implanted silicon carbide MESFETs. The model has been developed to obtain the threshold voltage, drain-source current, intrinsic parameters such as, gate capacitance, drain-source resistance and transconductance considering different fabrication parameters such as ion dose, ion energy, ion range and annealing effect parameters. The model is useful in determining the ion implantation fabrication parameters from the optimization of the active implanted channel thickness for different ion doses resulting in the desired pinch off voltage needed for high drain current and high breakdown voltage. The drain current of approximately 10 A obtained from the analytical model agrees well with that of the Synopsys Sentaurus TCAD simulation and the breakdown voltage approximately 85 V obtained from the TCAD simulation agrees well with published experimental results. The gate-to-source capacitance and gate-to-drain capacitance, drain-source resistance and trans-conductance were studied to understand the device frequency response. Cut off and maximum frequencies of approximately 10 GHz and 29 GHz respectively were obtained from Sentaurus TCAD and verified by the Smith's chart.

Modeling of the Laser Ablation under the RF Ar Plasmas (RF Ar 플라즈마에서의 레이저 어블레이션 모델링)

  • So, Soon-Youl;Lim, Jang-Seob;Lee, Jin;Jung, Hae-Deok;Park, Gye-Choon;Moon, Chae-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1408-1409
    • /
    • 2007
  • In this paper, we developed a hybrid simulation model of carbon laser ablation under the Ar plasmas consisted of fluid and particle methods. Three kinds of carbon particles, which are carbon atom, ion and electron emitted by laser ablation, are considered in the computation. In the present modeling, we adopt capacitively coupled plasma with ring electrode inserted in the space between the substrate and the target, graphite. This system may take an advantage of ${\mu}m$-sized droplets from the sheath electric field near the substrate. As a result, in Ar plasmas, carbon ion motions were suppressed by a strong electric field and were captured in Ar plasmas. Therefore, a low number density of carbon ions were deposited upon substrate. In addition, the plume motions in Ar gas atmosphere was also discussed.

  • PDF

Modeling and Experimental Study of Radio-frequency Glow Discharges and Applications for Plasma Processing

  • Kang, Nam-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.179-179
    • /
    • 2012
  • Low pressure radio-frequency glow discharges are investigated using theoretical modeling and various experimental diagnostic methods. In the calculations, global models and transformer models are developed to understand the chemical kinetics as well as the electrical properties such as the effective collision frequency, the heating mechanism and the power transferred to the plasma electrons. In addition, Boltzmann equation solver is used to compensate the effect of the electron energy distribution function (EEDF) shape in the global model, and the general expression of energy balance for non-Maxwellian electrons is developed. In the experiments, a number of traditional plasma diagnostic methods are used to compare with calculated results such as Langmuir probe, optical emission spectroscopy (OES), optical absorption spectroscopy (OAS) and two-photon absorption laser-induced fluorescence (TALIF). These theoretical and experimental methods are applied to understand several interesting phenomena in low pressure ICP discharges. The chemical and physical properties of low pressure ICP discharges are described and the applications of these methods are discussed.

  • PDF

A Study on IR Spectrum Characteristics of $PbTiO_3$ Thin Film and Pyroelectric Detector Modeling. ($PbTiO_3$ 박막의 적외선 스펙트럼특성과 초전감지소자의 모델링에 관한 연구)

  • Kim, Sung-Min;Lee, Moon-Key;Kim, Bong-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.439-443
    • /
    • 1987
  • $PbTiO_3$ thin film is prepared by rf sputtering method to implement the pyroelectric infrared detector at room temperature. Annealing of $PbTiO_3$ thin film is done from $400^{\circ}C$ to $550^{\circ}C$ each for 2 hours in furnace. The spectral response to recrystallization process of $PbTiO_3$ thin film is measured by IR photospectro meter. Pyroelectric detector Modeling is studied for implementing device using electrical equivalent circuit model. It is found that $PbTiO_3$ thin film has two IR absorption band within $1000-400\;cm^{-1}$ (10um-25um) and it's spectral response is improved as annealing temperature increase. As a result of pyroelectric detector modeling, we find the possibility of implementing optimum device structure.

  • PDF

Modeling and Digital Predistortion Design of RF Power Amplifier Using Extended Memory Polynomial (확장된 메모리 다항식 모델을 이용한 전력 증폭기 모델링 및 디지털 사전 왜곡기 설계)

  • Lee, Young-Sup;Ku, Hyun-Chul;Kim, Jeong-Hwi;Ryoo, Kyoo-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.11
    • /
    • pp.1254-1264
    • /
    • 2008
  • This paper suggests an extended memory polynomial model that improves accuracy in modeling memory effects of RF power amplifiers(PAs), and verifies effectiveness of the suggested method. The extended memory polynomial model includes cross-terms that are products of input terms that have different delay values to improve the limited accuracy of basic memory polynomial model that includes the diagonal terms of Volterra kernels. The complexity of the memoryless model, memory polynomial model, and the suggested model are compared. The extended memory polynomial model is represented with a matrix equation, and the Volterra kernels are extracted using least square method. In addition, the structure of digital predistorter and digital signal processing(DSP) algorithm based on the suggested model and indirect learning method are proposed to implement a digital predistortion linearization. To verify the suggested model, the predicted output of the model is compared with the measured output for a 10W GaN HEMT RF PA and 30 W LDMOS RF PA using 2.3 GHz WiBro input signal, and adjacent-channel power ratio(ACPR) performance with the proposed digital predistortion is measured. The proposed model increases model accuracy for the PAs, and improves the linearization performance by reducing ACPR.

Silicon Substrate Coupling Modeling and Analysis including RF Package Inductance (RF 패키지 인덕턴스가 실리콘 기판 커플링에 미치는 영향 모델링 및 해석)

  • Jin, U-Jin;Eo, Yeong-Seon;Sim, Jong-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.1
    • /
    • pp.49-57
    • /
    • 2002
  • Including RF Package inductance, substrate coupling through conductive silicon(Si)-substrate is modeled and quantitatively characterized. 2-port substrate coupling model is extended for the characterization of multi-port substrate coupling between digital circuit block and analog/RF circuit block. Furthermore, scalable parameter extraction model is developed. Multi-port substrate coupling can be investigated by linearly superposing a frequency-dependent 2-port substrate coupling model using scalable parameters. In addition, Substrate coupling including RF package inductance effect is quantitatively investigated. It is shown that package effect increases substrate coupling and shifts a characteristic frequencies(i.e., poles) to the higher frequency range. The proposed methodology can be efficiently used to the mixed-signal circuit performance verification.