• Title/Summary/Keyword: RF C-V

Search Result 575, Processing Time 0.025 seconds

Extraction and Modeling of High-Temperature Dependent Capacitance-Voltage Curve for RF MOSFETs (고온 종속 RF MOSFET 캐패시턴스-전압 곡선 추출 및 모델링)

  • Ko, Bong-Hyuk;Lee, Seong-Hearn
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.10
    • /
    • pp.1-6
    • /
    • 2010
  • In this paper, RF Capacitance-Voltage(C-V) curve of short-channel MOSFET has been extracted from the room temperature to $225^{\circ}C$ using a RF method based on measured S-parameter data, and its high-temperature dependent characteristics are empirically modeled. It is observed that the voltage shift according to the variation of temperature in the weak inversion region of RF C-V curves is lower than the threshold voltage shift, but it is confirmed that this phenomenon is unexplainable with a long-channel theoretical C-V equation. The new empirical equation is developed for high-temperature dependent modeling of short-channel MOSFET C-V curves. The accuracy of this equation is demonstrated by observing good agreements between the modeled and measured C-V data in the wide range of temperature. It is also confirmed that the channel capacitance decreases with increasing temperature at high gate voltage.

Effects of Deposition Parameters on the Bonding Structure and Optical Properties of rf Sputtered a-Si$_{1-x}$C$_{x}$: H films (RF 스퍼터링으로 증착된 a-Si$_{1-x}$C$_{x}$: H 박막의 결합구조와 광학적 성질에 미치는 증착변수의 영향)

  • 한승전;권혁상;이혁모
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.5
    • /
    • pp.271-281
    • /
    • 1992
  • Amorphous hydrogenated silicon carbide(a-Si1-xCx : H) films have been prepared by the rf sputtering using a silicon target in a gas mixture of Argon and methane with varying methane gas flow rate(fCH) in the range of 1.5 to 3.5 sccm at constant Argon flow rate of 30sccm and rf power in the range of 3 to 6 W/$\textrm{cm}^2$. The effects of methane flow rate and rf power on the structure and optical properties of a-Si1-xCx : H films have been analysed by measuring both the IR absorption spectrum and the UV transmittance for the films. With increasing the methane flow rate, the optical band gap(Eg) of a-Si1-xCx : H films increases gradually from 1.6eV to the maximum value of 2.42eV at rf power of 4 W/$\textrm{cm}^2$, which is due to an increases in C/Si ratio in the films by an significant increase in the number of C-Hn bonds. As the rf power increases, the number of Si-C and Si-Hn bonds increases rapidly with simultaneous reduction in the number of C-Hn bonds, which is associated with an increase in both degree of methane decomposition and sputtering of silicon. The effects of rf power on the Eg of films are considerably influenced by the methane flow rate. At low methane flow rate, the Eg of films decreased from 2.3eV to 1.8eV with the rf power. On the other hand, at high methane flow rate, that of films increased slowly to 2.4eV.

  • PDF

A Study on carbon nitride thin films prepared by RF reactively sputtering (RF 반응성 스퍼터링에 의한 비정질 carbon nitride 박막의 제조에 관한 연구)

  • 이철화;김병수;이상희;진윤영;이덕출;박구범
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.406-408
    • /
    • 1999
  • Amorphous carbon nitride thin films were prepared on pretreated silicon(100) substrate in sputtering graphite target by activated gas phase using RF reactively sputtering. We measured the FT-IR spectrum to identify C=N(nitrile)stretching mode(2200cm$\^$-1/), C-H stretching mode(2800cm$\^$-1/), C-H bending mode, C=C stretching mode C=N(imino) mode(1680cm$\^$-1/ ), and the XPS to investigate chemical structure of surface. By the results of FT-H and XPS spectrum, We confirmed that amorphous carbon nitride films with typel (C(1s): 285.9[eV], N(1s): 398.5[ev]) and type 2(C1s): 287.5[eV, N(1s): 400.2[eV]) successfully were synthesized by RF reactively sputtering

  • PDF

Characterization of Ferroelectric $SrBi_2Ta_2O_9$ Thin Films Deposited by RF Magnetron Sputtering With Various Annealing Temperatures (RF magnetron sputtering으로 제조된 강 유전체 $SrBi_2Ta_2O_9$ 박막의 열처리 온도에 따른 특성 연구)

  • 박상식;양철훈;윤순길;안준형;김호기
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.2
    • /
    • pp.202-208
    • /
    • 1997
  • Bi-layered SrBi2Ta2O9(SBT) films were deposited on Pt/Ti/SiO2/Si sibstrates by rf magnetron sputt-ering at room temperature and then were annealed at 75$0^{\circ}C$, 80$0^{\circ}C$ and 85$0^{\circ}C$ for 1 hour in oxygen at-mosphere. The film composition of SrBi2Ta2O9 was obtained after depositing at room temperature and annealing at 80$0^{\circ}C$. Excess 20mole% Bi2O3 and 30 mole% SrCO3 were added to the target to compensate for the lack of Bi and Sr in SBT film. 200 nm thick SBT film exhibited and dense microstructure, adielectric constant of 210, and a dissipation factor of 0.05 at 1 MHz frequency. The films exhibited Curie temperature of 32$0^{\circ}C$ and a dielectric constant of 314 at that temperature under 100 kHz frequency. The remanent polarization(2Pr) and the coercive field(2Ec) of the SBT films were 9.1 $\mu$C/$\textrm{cm}^2$ and 85 kV/cm at an applied voltage of 3V, resspectively and the SBT film showed a fatigue-free characteristics up to 1010 cy-cles under 5V bipolar pulse. The leakage current density of the SBT film was about 7$\times$10-7A/$\textrm{cm}^2$ at 150 kV/cm. Fatigue-free SBT films prepared by rf magnetron sputtering can be suitable for application to non-volatile memory device.

  • PDF

Fabrication and Properties of AIN/SiC Structures using Reactive RF Magnetron Sputtering Method (반응성 RF 마그네트론 스퍼터링 법을 이용한 AIN/SiC 구조의 제작 및 특성)

  • Kim, Yong-Seong;Kim, Kwang-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.11
    • /
    • pp.977-982
    • /
    • 2005
  • Al/AlN/n-type 6H-SiC (0001) MIS structures were prepared by AlN layers on vicinal 6H-SiC(0001) substrates with reactive RF magnetron sputtering method. The AlN films were annealed at $900^{\circ}C$, $N_2$ atmosphere lot 1 minutes showed the best result. With XRD analysis, AlN(0002) peak was clearly found. The typical dielectric constant value of the AlN film in the MIS capacitors was obtained as 8.4 from photo C-V. Also, the gate leakage current density of the MlS capacitor was $10^{-10}\;A/cm^2$ order within the electric field of 1.8 MV/cm. Finally, the amount of interface trap densities, $D_{it}$, was evaluated as $5.3\times10^{10}\;eV^{-1}cm^{-2}$ at (Ec-0.85) eV.

The Fabrication of Hydroxyapatite Targets and the Characteristics of Hydroxyapatite/Ti-6Al-4V Alloy Thin Films by RF Sputtering(I) (RF 스퍼터링용 Hydroxyapatite 타겟의 제조 및 Hydroxyapatite/Ti-6Al-4V 합금 박막의 특성(I))

  • Jung, Chan-Hoi;Kim, Myung-Han
    • Korean Journal of Materials Research
    • /
    • v.13 no.4
    • /
    • pp.205-212
    • /
    • 2003
  • RF sputtering process was applied to produce thin hydroxyapatite[HA, Ca10($PO_4$)$_{6}$ $ (OH)_2$films on Ti-6Al-4V alloy substrates. To make a 101.6 mm dia.${\times}$5 mm HA target, the commercial HA powder was first calcinated for 3h at $200^{\circ}C$. A certain amount of the calcinated HA powder was pressed under a pressure of 20,000 psi by the cold isostatic press(CIP) and the pressed HA target was sintered for 6 h at $1,200^{\circ}C$. The effects of different heat treating conditions on the bonding strength between HA thin films and Ti-6Al-4V alloy substrates were studied. Before deposition, the alloy substrates were annealed for 1 h at $850^{\circ}C$ under $3.0${\times}$10^{-3}$ Xtorr, and after deposition, the hydroxyapatite/Ti-6Al-4V alloy thin films were annealed for 1 h at 400, 600 and $800^{\circ}C$ under the atmosphere, respectively. Experimental results represented that the HA thin films on the annealed substrates had higher hardness than non-heat treated substrates before the deposition.

Accurate RF C-V Method to Extract Effective Channel Length and Parasitic Capacitance of Deep-Submicron LDD MOSFETs

  • Lee, Sangjun;Lee, Seonghearn
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.6
    • /
    • pp.653-657
    • /
    • 2015
  • A new paired gate-source voltage RF capacitance-voltage (C-V) method of extracting the effective channel length and parasitic capacitance using the intersection between two closely spaced linear regression lines of the gate capacitance versus gate length measured from S-parameters is proposed to remove errors from conventional C-V methods. Physically verified results are obtained at the gate-source voltage range where the slope of the gate capacitance versus gate-source voltage is maximized in the inversion region. The accuracy of this method is demonstrated by finding extracted value corresponding to the metallurgical channel length.

Microstructure and Electric Properties of Ferroelectric SrBi$_2$Ta$_2$O$_9$ Thin Films Deposited by Modified Rf Magnetron Sputtering Technique (Modified Rf Magnetron Sputtering에 의해 Pt/Ti/SiO$_2$/Si 기판위에 제조된 강유전체 SrBi$_2$Ta$_2$O$_9$ 박막의 미세구조 및 전기적 특성 연구)

  • 양철훈;윤순길
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.5
    • /
    • pp.472-478
    • /
    • 1998
  • Ferroelectric SrBi2Ta2O9(SBT) films were deposited on Pt/Ti/SiO2/Si substrates at 50$0^{\circ}C$ using a sintered SBT target Bi and Ta targets by modified rf magnetron sputtering and then were annealed at 80$0^{\circ}C$ for 10min in oxygen ambinet(760 torr) The composition of the SBT films could be easily controlled using the mul-ti-targets. The film composition of {{{{ {Sr }_{0.8 } {Bi }_{2.9 } {Ta}_{2.0 } {O }_{9 } }} was obtained with SBTd sputtering power of 100 W Bi of 25W and Ta of 10 W. A 250nm thick SBT films exhibited a dense and uniform microstructure and showed the remanent polarization(Pr) of 14.4 $\mu$C/cm2 and the coercive field({{{{ {E }_{c } }})of 60 kV/cm at applied voltage of 5 V. The SBT films show practically no polarization fatigue up to {{{{ {10 }_{10 } }} cycles under 5V bipolar pulse. The retention characteristics of the SBT films looked very promising and the leakage current density of the SBT films was about 1.23$\times${{{{ {10 }^{-7 } }}A/c{{{{ {m }^{2 } }} at 120kV/cm.

  • PDF

The ESCA Analysis of Hydroxyapatite Thin Films Deposited by RF Sputtering (RF 스퍼터링으로 증착된 하이드록시아파타이트 박막의 ESCA 분석)

  • Jung, Chan-Hoi;Lee, Jun-Hee;Kim, Soon-Kook;Kim, Myung-Han;Yu, Jae-Keun;Kim, Seung-Eon
    • Korean Journal of Materials Research
    • /
    • v.16 no.4
    • /
    • pp.264-271
    • /
    • 2006
  • RF sputtering process was applied to produce thin hydroxyapatite(HAp) films on Ti-6Al-4V alloy substrates. The effects of different heat treatment conditions on the chemical composites between HAp thin films and Ti-6Al-4V alloy substrates were studied. After deposition, the HAp thin films were heat treated for 1h at $400^{\circ}C,\;600^{\circ}C\;and\;800^{\circ}C$ under the atmosphere, and analyzed O/M, FESEM-EDX and ESCA, respectively. Experimental results represented that interface of HAp thin films and Ti-6Al-4V alloy substrates was composed Ti-OH, TiO, TiN, $Al_2O_3,\;V_2O_3,\;VO_2$. pyrophosphate and decreased carbide followed by the increase of heat treatment temperature.

V-I Characteristics of $(Sr_{0.85}Ca_{0.15})TiO_3$ Thin Film by RF Sputtering Method (RF 스퍼터링법에 의한 $(Sr_{0.85}Ca_{0.15})TiO_3$ 박막의 전압-전류 특성)

  • Kim, J.S.;Cho, C.N.;Shin, C.G.;Choi, W.S.;Kim, C.H.;Lee, J.U.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.88-91
    • /
    • 2000
  • The $(Sr_{0.85}Ca_{0.15})TiO_3$(SCT) thin films are deposited on Pt-coated electrode(Pt/TiN/$SiO_2$/Si) using RF sputtering method. The crystallinity of SCT thin films is increased with increase of substrate temperature in the temperature range of 200~500$[^{\circ}C]$. V-I characteristics of SCT thin films show the increasing leakage current with the increases of deposition temperature. The conduction mechanism of the SCT thin films observed in the temperature range of 25~100$[^{\circ}C]$ can be divided into four characteristic regions with different mechanism by the increasing current.

  • PDF