Extraction and Modeling of High-Temperature Dependent Capacitance-Voltage Curve for RF MOSFETs

고온 종속 RF MOSFET 캐패시턴스-전압 곡선 추출 및 모델링

  • Ko, Bong-Hyuk (Department of Electronics Engineering, Hankuk University of Foreign Studies) ;
  • Lee, Seong-Hearn (Department of Electronics Engineering, Hankuk University of Foreign Studies)
  • 고봉혁 (한국외국어대학교 전자공학과) ;
  • 이성현 (한국외국어대학교 전자공학과)
  • Received : 2010.07.20
  • Accepted : 2010.09.16
  • Published : 2010.10.25

Abstract

In this paper, RF Capacitance-Voltage(C-V) curve of short-channel MOSFET has been extracted from the room temperature to $225^{\circ}C$ using a RF method based on measured S-parameter data, and its high-temperature dependent characteristics are empirically modeled. It is observed that the voltage shift according to the variation of temperature in the weak inversion region of RF C-V curves is lower than the threshold voltage shift, but it is confirmed that this phenomenon is unexplainable with a long-channel theoretical C-V equation. The new empirical equation is developed for high-temperature dependent modeling of short-channel MOSFET C-V curves. The accuracy of this equation is demonstrated by observing good agreements between the modeled and measured C-V data in the wide range of temperature. It is also confirmed that the channel capacitance decreases with increasing temperature at high gate voltage.

본 연구에서는 S-파라미터 측정 데이터를 사용하는 RF측정방법으로 short-channel MOSFET의 RF 캐패시턴스 전압(C-V) 곡선을 상온에서 $225^{\circ}C$까지 추출하였으며, 추출된 고온 종속 특성을 엠피리컬하게 모델링하였다. RF C-V 특성곡선의 weak inversion영역에서 온도 변화에 따른 voltage shift가 threshold voltage shift보다 적은 현상이 관찰되었지만, 기존 long-channel C-V 이론 방정식으로 설명할 수 없는 현상임이 입증되었다. 이러한 short-channel C-V 곡선의 고온 종속 모델링을 위해서 새로운 엠피리컬 방정식이 개발되었다. 이 방정식의 정확도는 모델된 C-V곡선과 측정 데이터가 넓은 온도범위에서 잘 일치하는 결과를 관찰함으로써 입증되었다. 또한, 높은 게이트 전압에서는 온도가 증가함에 따라 채널 캐패시턴스 값이 감소하는 것을 확인할 수 있다.

Keywords

References

  1. J. Schmitz, F. N. Cubaynes, R. de Kort, A. J. Scholten, and L. F. Tiemeijer, "RF capacitancevoltage characterization of MOSFETs with high leakage dielectrics," IEEE Electron Device Lett., vol.24, pp.37-39, 2003. https://doi.org/10.1109/LED.2002.807016
  2. E. San Andres, L. Pantisano, J. Ramos, S. Severi, L. Trojman, S. De Gendt, and G. Groeseneken, "RF split capacitance-voltage measurements of short- channel and leaky MOSFET devices," IEEE Electron Device Lett, vol.27, pp.772-774, 2006. https://doi.org/10.1109/LED.2006.881089
  3. M. Emam, D. Vanhoenacker-Janvier and J.-P. Raskin, "High temperature DC and RF behavior of partially-depleted SOI versus deep n-well protected bulk MOSFETs," in Proc. IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, pp.1-4, 2009.
  4. J. Kim. J. Lee, Y. Yun, B. Park, J. Lee, and H. Shin, "Temperature dependence of effective channel length, source/drain resistance, and electron mobility in sub-50 nm MOSFETs," IEEE Silicon Nanoelectronics Workshop, pp.1-2, 2008.
  5. 고봉혁, 김주영, 최민권, 이성현, "Analysis of high-temperature dependence for RF capacitance-voltage curve," 대한전자공학회 하계학술대회, 제33권 1호, 479쪽-480쪽, 2010년.
  6. J. Cha, J. Cha, and S. Lee, "Uncertainty analysis of two-step and three-step methods for deembedding on-wafer RF transistor measurements," IEEE Trans. Electron Device, vol. 55, p. 2195-2201, 2008.
  7. B. Ko, D. Jung, and S. Lee, "Accurate extraction and modeling of high-temperature-dependent channel mobility in metal-oxide-semiconductor field-effect transistors using measured s-parameters," Japanese Journal of Applied Physics, vol. 49, 04DC22, 2010.
  8. Narain Arora, "MOSFET modeling for VLSI simulation: Theory and practice," World scientific, 2007.
  9. Y. P. Tsividis, "Operation and Modeling of the MOS Transistor," 2nd Edition, WCB/McGraw-Hill, p. 404, 1999.
  10. A. Kamgar, "Miniaturization of Si MOSFET's at 77k," IEEE Trans. Electron Devices, vol. ED-29, pp. 1226-1228, 1982.