DOI QR코드

DOI QR Code

The ESCA Analysis of Hydroxyapatite Thin Films Deposited by RF Sputtering

RF 스퍼터링으로 증착된 하이드록시아파타이트 박막의 ESCA 분석

  • Jung, Chan-Hoi (Dept. of Materials Science and Engineering, Donga University) ;
  • Lee, Jun-Hee (Dept. of Materials Science and Engineering, Donga University) ;
  • Kim, Soon-Kook (Dept. of Materials Science and Engineering, Donga University) ;
  • Kim, Myung-Han (Dept. of Materials Engineering, Chungbuk National University) ;
  • Yu, Jae-Keun (Dept. of Advanced Materials Engineering, Hoseo University) ;
  • Kim, Seung-Eon (Korea Institute Machinery & Materials)
  • Published : 2006.04.27

Abstract

RF sputtering process was applied to produce thin hydroxyapatite(HAp) films on Ti-6Al-4V alloy substrates. The effects of different heat treatment conditions on the chemical composites between HAp thin films and Ti-6Al-4V alloy substrates were studied. After deposition, the HAp thin films were heat treated for 1h at $400^{\circ}C,\;600^{\circ}C\;and\;800^{\circ}C$ under the atmosphere, and analyzed O/M, FESEM-EDX and ESCA, respectively. Experimental results represented that interface of HAp thin films and Ti-6Al-4V alloy substrates was composed Ti-OH, TiO, TiN, $Al_2O_3,\;V_2O_3,\;VO_2$. pyrophosphate and decreased carbide followed by the increase of heat treatment temperature.

Keywords

References

  1. K. van Dijk, H. G. Schaeken, J. G. G. Wolke and J. A, Jansen, Biomaterials, 17, 405-410 (1998) https://doi.org/10.1016/0142-9612(96)89656-6
  2. K. van Dijk, H. G. Schaeken, C. H. M. Maree, J. Verhoeven, J. G. G. Wolke, F. H. P. M. Habraken and J. A. Jansen, Surface and Coatings Technology, 76-77, 206-210 (1995) https://doi.org/10.1016/0257-8972(95)02590-1
  3. J. L. Ong, D. R. Villarreal, R. and Ma K. Kavin, Journal of Materials Science: Materials Medicine, 12, 491 (2001) https://doi.org/10.1023/A:1011259311032
  4. W. J. Lo, D. M. Grant, M. D, Ball, B. S. Welsh, S. M. Howdle, E. N. Antonov, V. N. Bagratashvili and V. K. Popov, John Wiley & Sons, Inc, J. Biomed. Mater, Res., 50, 536 (2000) https://doi.org/10.1002/(SICI)1097-4636(20000615)50:4<536::AID-JBM9>3.0.CO;2-U
  5. M. Okazaki, Y. Yoshida, S, Yamaguchi, M. Kaneno and J. C. Elliott, Biomaterials, 22, 2459-2464 (2001) https://doi.org/10.1016/S0142-9612(00)00433-6
  6. M. Okazaki, Y. Miake, H. Tohda, T. Yanagisawa, T. Matsumoto and J. Takahashi, Biomaterials, 20, 1421-1426 (1999) https://doi.org/10.1016/S0142-9612(99)00049-6
  7. M. Okazaki and J. Takahashi, Biomaterials, 20, 1073-1078 (1999) https://doi.org/10.1016/S0142-9612(98)00244-0
  8. Qing Liua, Jiang Dingb, F. K. Mantee, S. L. Wunderb and G. R. Barana, Biomaterials, 23, 3103-3111 (2002) https://doi.org/10.1016/S0142-9612(02)00050-9
  9. C. H. Jung and M. H. Kim, Kor. J. Mater, Res., 13(4), 205-212 (2003) https://doi.org/10.3740/MRSK.2003.13.4.205
  10. Metals Handbook : Properties and Selection-Nonferrous Alloys and Special-Purpose Materials, Vol. 2, Tenth Edition, p.620, ASM International, USA, (1990)
  11. D. R. Gaskell, Introduction to the Thermodynamics of Materials, 3th ed., p.538-539. SciTech Media, Seoul, Korea, (1999)
  12. J. F. Moulder, W. F. Stickle, P. E. Stickle and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics, Inc., Perkin-Elmer Corporation, Eden Prairie, Minnesota, USA, (1995)
  13. A. Casagrande, A. Glisenti, E. Lanzoni, E. Tondello, L. Mirenghi, M, Casarin and R. Bertoncello, Surface and Interface Analysis, 18, 525-531 (1992) https://doi.org/10.1002/sia.740180712
  14. H. I. P. Johansson, K. L. Hakansson and L. I. Johansson, Physical Review B, 48(19), 14520-14523 (1993) https://doi.org/10.1103/PhysRevB.48.14520
  15. C. Landron, D. Billard, D. Massiot, G. Peraudeau, J. P. Coutures and R. Erre, Radiation Effects, 98, 83-91 (1986) https://doi.org/10.1080/00337578608206100
  16. A. Tressaud, E. Papirer, F. Moguet, G. Nanse and P. Fioux, Carbon, 35(2), 175-194 (1997) https://doi.org/10.1016/S0008-6223(96)00095-4
  17. H. F. Franzen, J. Merrick, M. Umana, A. S. Khan, D. T. Peterson, J. R, Mc-Creary and R. J. Thorn, J. Electron Spectrosc, Relat. Phenom., 11, 439 (1977) https://doi.org/10.1016/0368-2048(77)80019-4
  18. T. L. Barr, J. Vac. Sci. Technol. A, 9(3), 1793-1805 (1991) https://doi.org/10.1116/1.577464
  19. B. F. Lowenberg, B. W. Callen, J. E. Davies, R. N. S. Sodhi and S. Lugowski, Journal of Biomedical Materials Research, 29, 279-290 (1995) https://doi.org/10.1002/jbm.820290302
  20. C. D. Wagner and J. A. Taylor, J. Electron Spectrosc. Relat. Phenom., 20, 83 (1980) https://doi.org/10.1016/0368-2048(80)85008-0
  21. H. Iwasaki, Y. Mizokawa, R. Nishitani and S. Nakamura, Surf, Sci., 86, 811 (1979) https://doi.org/10.1016/0039-6028(79)90462-X
  22. R. Nishitani, H. Iwasaki, Y. Mizokawa and S, Nakamura, Jpn. J. Appl. Phys., 17, 321 (1978) https://doi.org/10.1143/JJAP.17.321
  23. P. Swift, Surf. Interface Anal., 4, 47 (1982) https://doi.org/10.1002/sia.740040204
  24. C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder and G. E. Mullenberg, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics Division, Perkin-Elmer Corporation, Eden Prairie, MN (1979)
  25. C. R. Anderson, R. N, Lee, J. F. Morar and R. L. Park, J. Vac. Sci. Technol., 20, 617 (1982) https://doi.org/10.1116/1.571406
  26. D. Briggs and M. P. Seah, John WILLEY & SONS, Vol. 1, second edition (1993)
  27. E. C. Onyiriuka, Applied Spectroscopy, 47(1) (1993) https://doi.org/10.1366/0003702934048488
  28. C. H. Cardinaud, G. Lemperiere, M. C. Peignon and P. Y. Jouan, Applied Surface Science, 68, 595-603 (1993) https://doi.org/10.1016/0169-4332(93)90241-3
  29. D. Simon, C. Perrin and J. Bardolle, Microsc. Electron, 1, 175 (1976)
  30. C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder and G. E. Mullenberg, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics Division, Perkin-Elmer Corporation, Eden Prairie, MN (1992)
  31. S. Sato, S. Shin, S. Suzuki, T. Ejirna, T. Ishii and Y. Tezuka, Journal of the Physical Society of Japan, 63(1), 347-357 (1994) https://doi.org/10.1143/JPSJ.63.347
  32. A. Fernandez, A. R. Gonzalez-Elipe, D. Leinen, J. P. Espinos and J. P. Holgado, Applied Surface Science, 68, 453-459 (1993) https://doi.org/10.1016/0169-4332(93)90226-2
  33. Tetsuya Tateishi, Yoshimasa Ito and Yoshirnitsu Okazaki, Materials Transactions, JIM, 38(1), 78-84 (1997) https://doi.org/10.2320/matertrans1989.38.78
  34. A. E. Miller, C. Ernsberger, D. Banks, J. Nickerson and T. Smith, J. Vac. Sci. Technol. A, 4(6), 2784-2788 (1986) https://doi.org/10.1116/1.573679
  35. A Weninger, J. E. Davies, K. Sreenivas and R. N, S Sodhi, J. Vac. Sci, Technol. A, 9(3), 1329-1333 (1991) https://doi.org/10.1116/1.577621
  36. J. A. Tayler, J. vac. Sci. Technol., 20, 751 (1982) https://doi.org/10.1116/1.571450
  37. C. D. Wagner, D. E. Passoja, H. F. Hillery, T. G. Kinisky, H. A, Six, W. T. Jansen and J. A. Taylor, J. Vac. Sci. Technol., 21, 933 (1982) https://doi.org/10.1116/1.571870
  38. E. Ollivier and F. Cordier, Surface and Interface Analysis, 23, 601-608 (1995) https://doi.org/10.1002/sia.740230905
  39. K. T. Ng and D. M. Hercules, J. Phys. Chem., 80, 2095 (1976) https://doi.org/10.1021/j100560a009
  40. V. L. Nefedov, J. Electron Spectrosc, Relat. Phenom., 25, 29 (1982) https://doi.org/10.1016/0368-2048(82)85002-0
  41. G. E. McGuire, G. F. F. Schweitzer and T. A. Carlson, Inorg. Chem., 12, 2451 (1973) https://doi.org/10.1021/ic50128a045
  42. V. I. Nefodov, Y. V. Salyn, G. Leonhardt and R. Scheibe, J. Electron Spectrosc. Relat. Phenom., 10, 121 (1977) https://doi.org/10.1016/0368-2048(77)85010-X
  43. T. L. Barr, Appl. Surf. Sci., 15, 1 (1983) https://doi.org/10.1016/0378-5963(83)90003-X
  44. J. C. Klein and D. M. Hercules, J. Catal., 82, 424 (1983) https://doi.org/10.1016/0021-9517(83)90209-9
  45. V. I. Nefedov, D. Gati, B. F. Dzhurinskii, N. P. Sergushin, Y. V. Salyn and Zh, Neorg. Khim., 20, 2307 (1975)
  46. R. J. Colton, A. M. Guzman and J. W. Rabalais, J. Appl. Phys, 49, 409 (1978) https://doi.org/10.1063/1.324349
  47. D. Briggs and M. P. Seah, John WILLEY & SONS, Vol. 1, second edition (1993)
  48. D. Borgmann, E. Hums, G. Hopfengartner, G. Wedler, G. W. Spitznagel and I. Rademacher, Journal of Electron Spectroscopy and Related Phenomena, 63, 91-116 (1993) https://doi.org/10.1016/0368-2048(93)80042-K
  49. W. E. Morgan, J. R. Van Wazer and W. J. Stec, J. Am. Chem. Soc., 95, 751 (1973) https://doi.org/10.1021/ja00784a018
  50. R. Gresch, W. Mueller-Warmuth and H. Dutz, J. Non-Cryst. Solids, 34, 127 (1979) https://doi.org/10.1016/0022-3093(79)90012-7
  51. D. Costa. P. Marcus and W. P. YANG, Journal Electrochem. Soc., 141(10), 2669-2676 (1994) https://doi.org/10.1149/1.2059166
  52. B. F. Dzhurinskii, D. Gati, N. P. Sergushin, V. I. Nefedov and YA. V. Salyn, Russian Journal of Inorganic Chemistry, 20, 2307-2314 (1975)