• Title/Summary/Keyword: RAW264.7 세포

Search Result 1,087, Processing Time 0.033 seconds

The protective effects of polyphenol-rich black chokeberry against oxidative stress and inflammation (폴리페놀 함유 블랙 초크베리의 산화적 스트레스 및 염증에 대한 보호 효과)

  • Jeon, Sohyeon;Kim, Bohkyung
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.2
    • /
    • pp.138-143
    • /
    • 2020
  • Black chokeberry (Aronia melanocarpa) has been suggested to exert antioxidant and anti-inflammatory effects due to its high polyphenol content. However, the mechanisms underlying the effects of black chokeberry on the alterations of nuclear factor E2-related factor 2 (NRF2) and nuclear factor κB (NF-κB) in macrophages have not been thoroughly studied. In this study, we investigated the protective effects of polyphenol-rich black chokeberry extract (CBE) against lipopolysaccharide (LPS)-induced oxidative stress and inflammation in RAW 264.7 macrophages. CBE significantly attenuated the increase of cellular reactive oxygen species (ROS) levels and the nuclear translocation of NRF-2 in LPS-stimulated macrophages. The mRNA abundances of Nrf2 and its downstream antioxidant genes were significantly decreased in LPS-stimulated macrophages. The LPS-induced mRNA expression of proinflammatory cytokines was significantly inhibited by reducing the nuclear translocation of NF-κB by CBE. These data suggest that black chokeberry may be used for the prevention of oxidative stress and inflammation-associated disease.

Comparison of Radical Scavenging, Anticytotoxic, and Anti-Inflammatory Effects of Euphorbia Maculata and E. supina (큰땅빈대와 애기땅빈대의 라디칼 소거, 세포독성 억제 및 항염증 활성 비교)

  • Rhim, Tae-Jin
    • Journal of Environmental Science International
    • /
    • v.25 no.8
    • /
    • pp.1131-1142
    • /
    • 2016
  • This study was conducted to compare the antioxidant, anticytotoxic, and anti-inflammatory properties of Euphorbia maculata ethanol extract with those of E. supina ethanol extract. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical and superoxide scavenging activities of E. maculata at $50{\mu}g/mL$ were $38.3{\pm}3.7$ and $21.5{\pm}1.2%$, respectively, whereas those of E. supina at the same concentration were $109.4{\pm}0.9$ and $59.5{\pm}4.8%$, respectively. Oxygen radical absorbance capacities of E. maculata and E. supina at $10{\mu}g/mL$ were $14.70{\pm}0.63$ and $26.17{\pm}1.36nmol/mL$ Trolox, respectively. Cupric reducing antioxidant capacities of E. maculata and E. supina at $10{\mu}g/mL$ were $10.22{\pm}0.97$ and $62.99{\pm}5.28nmol/mL$ Trolox, respectively. Total phenolic contents of E. maculata and E. supina at $50{\mu}g/mL$ were $29.03{\pm}0.14$ and $87.89{\pm}0.20nmol/mL$ gallic acid, respectively. E. maculata and E. supina were reported to prevent supercoiled DNA breakage induced by peroxyl and hydroxyl radicals in a concentration-dependent manner, where protection against the supercoiled DNA breakage provided by E. supina was greater than that provided by E. maculata. E. maculata and E. supina at $100{\mu}g/mL$ inhibited tert-butyl hydroperoxide-induced cytotoxicity in HepG2 cells by $49.4{\pm}4.3$ and $87.3{\pm}4.5%$, respectively. E. maculata and E. supina at $500{\mu}g/mL$ inhibited lipopolysaccharide-induced nitric oxide production in RAW 264.7 cells by $63.1{\pm}7.0$ and $85.2{\pm}1.6%$, respectively. The antioxidant capacities including DPPH radical scavenging, superoxide scavenging, oxygen radical absorbance, and cupric reducing antioxidant activity were found to be highly correlated with total phenolic content (0.896 < r < 0.983, p < 0.01) and anticytotoxic activities (0.915 < r < 0.960, p < 0.01). However, the superoxide scavenging activity was not significantly correlated (r = 0.604, p > 0.05) with the anti-inflammatory activity. Thus, these findings demonstrated that the radical scavenging, anticytotoxic, and anti-inflammatory capacities of E. supina were more potent than those of E. maculata. Further studies are needed to elucidate the properties of polyphenolic constituents in E. supina responsible for these effects and the underlying mechanisms.

Whitening and Anti-inflammatory Constituents from the Extract of Citrullus lanatus Vines (수박 덩굴 추출물 유래 미백 및 항염 활성 성분)

  • Jeon, Ah Lim;Kim, Jung Eun;Lee, Nam Ho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.1
    • /
    • pp.53-60
    • /
    • 2017
  • In this study, we investigated whitening and anti-inflammatory constituents from a watermelon (Citrullus lanatus, C. lanatus) vines (leaves and stems). As anti-melanogenesis and anti-inflammatory activities were screened for the ethanol extract and solvent fractions, n-hexane (n-Hex) and ethyl acetate (EtOAc) fractions showed the most potent activities. Three constituents were isolated from the n-Hex and EtOAc fractions of C. lanatus; ${\alpha}-linolenic$ acid (1), sigmast-7-en-O-${\beta}$-D-glucopyranoside (2), 1-feruloyl-${\beta}$-D-glucopyrinoside (3). The chemical structures of the isolated compounds were elucidated based on the spectroscopic data including $^1H$ and $^{13}C$ NMR spectra, as well as comparison of the data to the literature values. Whitening and anti-inflammatory effects were studied for the isolated compounds. Upon the anti-melanogenesis tests using ${\alpha}-MSH$ stimulated B16F10 melanoma cells, the compounds 1 and 3 inhibited the cellular melanogenesis and intracellular tyrosinase activities effectively. For the anti-inflammation tests using lipopolysaccharide (LPS)-induced RAW 264.7 cells, the isolates 1 and 3 were determined to decrease the production of nitric oxide (NO) and pro-inflammatory cytokines ($TNF-{\alpha}$, IL-6). Based on these results, C. lanatus vines extract could be potentially applicable as whitening and anti-inflammatory ingredients in cosmetic formulations.

Anti-Diabetic, Alcohol Metabolizing Enzyme, and Hepatoprotective Activity of Acer tegmentosum Maxim. Stem Extracts (산겨릅나무 줄기 추출물의 항당뇨, 알코올 대사 효소 및 간 보호 활성)

  • Cho, Eun Kyung;Jung, Kyung Im;Choi, Young Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.12
    • /
    • pp.1785-1792
    • /
    • 2015
  • This study was carried out to investigate the antidiabetic, alcohol metabolism, anti-inflammatory, and hepatoprotective effects of Acer tegmentosum extracts (ATE). A. tegmentosum has been traditionally used as a folk medicine to treat hepatic disorders. The antioxidative activities of ATE were measured by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and superoxide (SOD) assay. DPPH radical scavenging and SOD activities of ATE were about 89% and 82.9% at $0.5{\mu}g/mL$, respectively. Alcohol dehydrogenase and acetaldehyde dehydrogenase activities were 118.0% and 177% at 2 mg/mL, respectively. ${\alpha}-Glucosidase$ inhibitory activity of ATE was 75% higher at $50{\mu}g/mL$ and remarkably increased in a dose-dependent manner. Nitric oxide productions in macrophage RAW 264.7 cells stimulated by lipopolysaccharide was reduced to 16.7% by addition of ATE at 1 mg/mL. ATE showed significant protective effects against tacrine-induced cytotoxicity in Hep G2 cells at $100{\mu}g/mL$. Based on our results, we conclude that ATE may be used as a major pharmacological agent and anti-diabetic, anti-hepatitis, and anti-inflammatory remedy.

Biological Activities of Yellow Garlic Extract (황마늘 추출물의 생리활성)

  • Kang, Jae Ran;Hwang, Cho Rong;Sim, Hye Jin;Kang, Min Jung;Kang, Sang Tae;Shin, Jung Hye
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.7
    • /
    • pp.983-992
    • /
    • 2015
  • This study investigated the quality characteristics and biological activities, such as antioxidant, whitening, anti-diabetes, and anti-inflammatory activities, of yellow garlic, by simplify processing time and manufacturing process compared with black garlic. Extracts were prepared various ratios of water and ethanol solvent [water : ethanol (v/v)=100:0, 70:30, 50:50, 30:70, 0:100] from yellow garlic. Alliin content of yellow garlic showed no difference compared with fresh garlic, whereas S-allyl cysteine content of yellow garlic was higher than that of fresh garlic. Alliin content of yellow garlic extracts increased in an ethanol concentration-dependent manner. Total phenol and flavonoid contents were highest in 100% ethanol extract. DPPH and ABTS radical scavenging abilities did not show significant differences among 0~70% ethanol extracts, whereas 100% ethanol extract showed the highest contents of 93.45% and 91.46%, respectively. Tyrosinase and ${\alpha}$-glucosidase inhibitory activities were also highest in 100% ethanol extract, but did not show significant differences among the extract solvents. Water and ethanol extracts from yellow garlic showed anti-inflammatory effects by modulating production of NO and cytokines at a concentration of $100{\mu}g/mL$. We suggest that yellow garlic has antioxidant, whitening, anti-diabetes, and anti-inflammatory activities and can be used as a functional material similar to black garlic.

Biological Activities of Solvent Extracts from Leaves of Aceriphyllum rossii (돌단풍 잎 용매추출물의 생리활성)

  • Lim, Sang-Hyun;Kim, Hee-Yeon;Park, Min-Hee;Park, Yu-Hwa;Ham, Hun-Ju;Lee, Ki-Yun;Kim, Kyung-Hee;Park, Dong-Sik;Kim, Song-Mun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.12
    • /
    • pp.1739-1744
    • /
    • 2010
  • In this study, the bioactivities of ethanol (EEAR) and water extract (WEAR) from the leaf of Aceriphyllum rossii were investigated. In the anti-oxidative activity, IC50 of DPPH radical scavenging activity was respectively 549.86 and $62.14{\mu}g$/mL by EEAR and WEAR. Anti-inflammatory activity of EEAR and WEAR has been evaluated on inhibition of lipopolysaccharide (LPS)-induced nitric oxide (NO) release by the macrophage RAW 264.7 cells. EEAR and WEAR inhibited inflammatory by 5.58 and 16.85% in 10 mg/mL, respectively. In the anti-diabetic activity, $IC_{50}$ of $\alpha$-glucosidase inhibitory activity was 5.62 and $425.63{\mu}g$/mL by EEAR and WEAR. $IC_{50}$ of $\alpha$-amylase inhibitory activity of EEAR and WEAR was 4,623.87 and over $10,000{\mu}g$/mL, respectively. In the anti-obesity, all lipase inhibitory activity ($IC_{50}$) of EEAR and WEAR was up $10,000{\mu}g$/mL. Finally, EEAR and WEAR exhibited anti-oxidative and anti-diabetic activity. It suggests that Aceriphyllum rossii could be potentially used as a resource of bioactive materials for health functional foods.

In vitro antioxidant, anti-diabetic, anti-cholinesterase, tyrosinase and nitric oxide inhibitory potential of fruiting bodies of Coprinellus micaceus (갈색먹물버섯 자실체의 메탄올과 열수추출물의 항산화, 항당뇨, 항콜린에스테라아제, 항티로시나아제 및 Nitric oxide의 저해 효과)

  • Nguyen, Trung Kien;Lee, Min Woong;Yoon, Ki Nam;Kim, Hye Young;Jin, Ga-Heon;Choi, Jae-Hyuk;Im, Kyung Hoan;Lee, Tae Soo
    • Journal of Mushroom
    • /
    • v.12 no.4
    • /
    • pp.330-340
    • /
    • 2014
  • Coprinellus micaceus, belongs to family Psathyrellaceae of Agaricales, Basidiomycota, has been used for edible purposes in the world. This study was initiated to evaluate the antioxidant, anti-diabetic, anti-cholinesterase, anti-tyrosinase, and nitric oxide inhibitory activities of fruiting bodies from C. micaceus extracted with methanol and hot water. The HPLC analysis of phenolic compounds from the mushroom extracts identified 4 phenolic compounds including procatechuic acid, chlorogenic acid, (-)-epicatechin, and naringin. In 1,1-diphenyl-2-picrylhydrazyl(DPPH) free radical scavenging assay, the scavenging activities of methanol and hot water extracts were lower than that of positive control, BHT. The chelating effects of methanol and hot water extracts were significantly higher than that of BHT, the positive control at the all concentrations tested. In the reducing power assay, methanol and hot water extracts exhibited the lower activities compared with positive control at the 0.125-0.2 mg/ml. The methanol and hot water extracts of the mushroom inhibited the ${\alpha}$-glucosidase activity by 62.26% and 67.59%, respectively at the 2.0 mg/ml, while acarbose, the positive control, inhibited the ${\alpha}$-glucosidase activity by 81.81% at the same concentration. In the acetylcholinesterase(AChE) inhibitory activity assay, methanol and hot water extracts of the mushroom inhibited the AChE by 94.64% and 74.19%, respectively at 1.0 mg/ml, whereas the galanthamine, standard drug, inhibited the AChE activity by 97.80% at the same concentration. The tyrosinase inhibitory activities of methanol and hot water extracts were 91.33% and 91.99% at 2.0 mg/ml, while the inhibitory activity of kojic acid, the positive control, was 99.61% at the same concentration. Nitric oxide(NO) production in lipopolysaccahride (LPS) activated RAW 264.7 cells were inhibited by the methanol and hot water extracts in a concentration dependent manner. Therefore, it is concluded that fruiting bodies of C. micaceus contained natural antioxidant, anti-acetylcholinesterase and ${\alpha}$-glucosidase inhibitory, anti-inflammatory, anti-tyrosinase substances which might be used for promoting human health.

Anti-Inflammatory Effects of Picrasma Quassioides (D.DON) BENN Leaves Extracts (소태나무 잎 추출물의 항염증 효과)

  • Jung, Yeon Seop;Eun, Cheong Su;Jung, Young Tae;Kim, Hyun Jeong;Yu, Mi Hee
    • Journal of Life Science
    • /
    • v.23 no.5
    • /
    • pp.629-636
    • /
    • 2013
  • This study was performed to evaluate the anti-inflammatory and antioxidant activities of methanol extract from the leaves of Picrasma quassioides BENNET (PLME). The antioxidant effects of PLME were measured based on polyphenol and flavonoid contents. PLME was found to have $367.52{\mu}g/mg$ and $46.61{\mu}g/mg$ high polyphenol and flavonoid contents. Cell viability was determined by MTT assay. The production of nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) was measured by Griess assay and enzyme-linked immunosorbent assay (ELISA). In order to effectively anti-inflammatory agents, we examined the inhibitory effects on the production of lipopolysaccharide (LPS)-induced NO and $PGE_2$ in RAW 264.7 cells. PLME significantly decreased the production of NO and $PGE_2$ in a dose-dependent manner, and also reduced the expression of iNOS, a COX-2 protein. In addition, PLME reduced the NF-${\kappa}B$, $I{\kappa}B$ phosphorylation in RAW 264.7 cells upon stimulation with LPS (100 ng/ml) for 24 h. These results provide evidence for the anti-inflammatory and antioxidant effects of Picrasma quassioides leaves.

Anti-Inflammatory Effects of Volatile Flavor Extract from Herbal Medicinal Prescriptions Including Cnidium officinale Makino and Angelica gigas Nakai (천궁 및 당귀를 함유한 한방처방제 휘발성 향기추출물의 항염증 효과)

  • Leem, Hyun-Hee;Kim, Eun-Ok;Seo, Mi-Jae;Choi, Sang-Won
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.37 no.3
    • /
    • pp.199-210
    • /
    • 2011
  • This study was conducted to develop functional sources of herbal cosmetics for treatment of skin aging and inflammatory disorders using volatile flavor extracts of four different herbal medicinal prescriptions including Cnidium officinale Makino (COM), Angelica gigas Nakai (AGN), Mentha arvense L. (MAL), Artemisiae argyi Folium (AAF), Paeonia lactiflora Pall (PLP), Rehmanniae Radix Preparata (RRP), Scutellaria baicalensis Georgi (SBG), Panax ginseng C.A. Meyer (PGM), Glycyrrhiza uralensis Fisch (GUF). The volatile flavor extracts of four different herbal medicinal prescriptions (HH-1: COM, AGN, PLP, RRP, HH-2: COM, AGN, PLP, RRP, SBG, PGM, GUF, HH-3: COM, AGN, MAL, AAF, HH-4: COM, AGN, MAL, AAF, SBG, PGM, GUF) were extracted using SDE and their antioxidant and anti-inflammatory effects were measured by using DPPH radical and SLO, respectively. As a result, HH-2 showed moderate DPPH radical scavenging activity (68.24 %) and the strongest SLO inhibitory activity (83.96 %) at 100 ${\mu}g$/mL. Moreover, HH-2 of four different prescriptions significantly inhibited NO production on LPS-stimulated RAW 264.7 cells in a dose-dependent manner without considerable cell cytotoxicity at range of 2.0 ~ 50 ${\mu}g$/mL. Additionally, HH-2 also effectively suppressed the production of $PGE_2$ and IL-6, which are responsible for promoting the inflammatory process. Major volatile components of HH-2 were identified as eugenol, paeonol, butyl phthalide, ${\beta}$-eudesmol and butylidene dihydrophthalide by GC-MS analysis. Thus, these results suggest that HH-2 may be useful as a potential source of anti-inflammatory agents in herbal medicinal cosmetics.

Anti-Oxidative and Anti-Inflammatory Activities of Euptelea Pleiosperma Ethanol Extract (Euptelea pleiosperma 에탄올 추출물의 항산화 및 항염증 활성)

  • Jin, Kyong-Suk;Park, Jung Ae;Lee, Ji Young;Kang, Ji Sook;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.2
    • /
    • pp.170-176
    • /
    • 2014
  • In this study, the anti-oxidative and anti-inflammatory activities of Euptelea pleiosperma ethanol extract (EPEE) were evaluated using in vitro assays and cell culture model systems. EPEE possessed a more potent scavenging activity against 1,1-diphenyl-2-picryl hydrazyl than the ascorbic acid used as a positive control. EPEE effectively suppressed lipopolysaccharide (LPS), in addition to hydrogen peroxide induced reactive oxygen species on RAW 264.7 cells. Furthermore, EPEE induced the expression of the anti-oxidative enzyme heme oxygenase 1 (HO-1) and its upstream transcription factor, nuclear factor-E2-related factor 2 (Nrf2), dose and time dependently. The modulation of HO-1 and Nrf2 expression might be regulated by mitogen-activated protein kinases and phosphatidyl inositol 3 kinase/Akt as their upstream signaling pathways. On the other hand, EPEE inhibited LPS induced nitric oxide (NO) formation without cytotoxicity. Suppression of NO formation was the result of the down regulation of inducible NO synthase (iNOS) by EPEE. Suppression of NO and iNOS by EPEE may be modulated by their upstream transcription factor, nuclear factor ${\kappa}B$, and AP-1 pathways. Taken together, these results provide important new insights into E. pleiosperma, namely that it possesses anti-oxidative and anti-inflammatory activities, indicating that it could be utilized as a promising material in the field of nutraceuticals.