DOI QR코드

DOI QR Code

In vitro antioxidant, anti-diabetic, anti-cholinesterase, tyrosinase and nitric oxide inhibitory potential of fruiting bodies of Coprinellus micaceus

갈색먹물버섯 자실체의 메탄올과 열수추출물의 항산화, 항당뇨, 항콜린에스테라아제, 항티로시나아제 및 Nitric oxide의 저해 효과

  • Nguyen, Trung Kien (Division of Life Sciences, Incheon National University) ;
  • Lee, Min Woong (Department of Life Sciences, Dongguk University) ;
  • Yoon, Ki Nam (Department of Clinical Laboratory Science, Ansan University) ;
  • Kim, Hye Young (Department of Clinical Laboratory Science, Shinsung University) ;
  • Jin, Ga-Heon (Department of Ophthalmic Optics, Shinhan University) ;
  • Choi, Jae-Hyuk (Division of Life Sciences, Incheon National University) ;
  • Im, Kyung Hoan (Division of Life Sciences, Incheon National University) ;
  • Lee, Tae Soo (Division of Life Sciences, Incheon National University)
  • Received : 2014.12.01
  • Accepted : 2014.12.22
  • Published : 2014.12.31

Abstract

Coprinellus micaceus, belongs to family Psathyrellaceae of Agaricales, Basidiomycota, has been used for edible purposes in the world. This study was initiated to evaluate the antioxidant, anti-diabetic, anti-cholinesterase, anti-tyrosinase, and nitric oxide inhibitory activities of fruiting bodies from C. micaceus extracted with methanol and hot water. The HPLC analysis of phenolic compounds from the mushroom extracts identified 4 phenolic compounds including procatechuic acid, chlorogenic acid, (-)-epicatechin, and naringin. In 1,1-diphenyl-2-picrylhydrazyl(DPPH) free radical scavenging assay, the scavenging activities of methanol and hot water extracts were lower than that of positive control, BHT. The chelating effects of methanol and hot water extracts were significantly higher than that of BHT, the positive control at the all concentrations tested. In the reducing power assay, methanol and hot water extracts exhibited the lower activities compared with positive control at the 0.125-0.2 mg/ml. The methanol and hot water extracts of the mushroom inhibited the ${\alpha}$-glucosidase activity by 62.26% and 67.59%, respectively at the 2.0 mg/ml, while acarbose, the positive control, inhibited the ${\alpha}$-glucosidase activity by 81.81% at the same concentration. In the acetylcholinesterase(AChE) inhibitory activity assay, methanol and hot water extracts of the mushroom inhibited the AChE by 94.64% and 74.19%, respectively at 1.0 mg/ml, whereas the galanthamine, standard drug, inhibited the AChE activity by 97.80% at the same concentration. The tyrosinase inhibitory activities of methanol and hot water extracts were 91.33% and 91.99% at 2.0 mg/ml, while the inhibitory activity of kojic acid, the positive control, was 99.61% at the same concentration. Nitric oxide(NO) production in lipopolysaccahride (LPS) activated RAW 264.7 cells were inhibited by the methanol and hot water extracts in a concentration dependent manner. Therefore, it is concluded that fruiting bodies of C. micaceus contained natural antioxidant, anti-acetylcholinesterase and ${\alpha}$-glucosidase inhibitory, anti-inflammatory, anti-tyrosinase substances which might be used for promoting human health.

본 연구에서는 메탄올과 열수를 이용해 갈색먹물버섯의 자실체로부터 추출한 물질의 항산화, 항당뇨, 항콜린에스테라아제, 항티로시나제와 항염증 효과를 탐색하였다. 고속액체크로마토그래피를 이용해 추출물의 페놀성 화합물을 분석한 결과 procatechuic acid, chlorogenic acid, (-)-epicatechin, naringin 등 총 4종류의 페놀성 화합물이 확인되었다. 항산화 효과 실험에서 DPPH radical 소거능은 양성대조군으로 사용한 BHT에 비해 낮았지만 효과가 비교적 우수하였고, 철 이온을 제거하는 항산화 효과는 메탄올과 열수 추출물이 양성대조군인 BHT에 비해 30% 높게 나타났으나 환원력은 양성대조군에 비해 43% 정도 낮은 것으로 나타났다. 항당뇨 실험에서 ${\alpha}$-amylase와 ${\alpha}$-glucosidase에 대한 메탄올과 열수추출물의 저해효과는 2.0 mg/ml의 농도에서 각각 62.26%와 67.59%를 보여 양성대조군인 acarbose의 81.81%에 비해 낮았다. 아세틸콜린에스테라아제에 대한 메탄올과 열수추출물의 저해효과는 1.0 mg/ml의 농도에서 각각 94.64%와 74.19%를 보여 양성대조군인 galanthamine의 97.80%에 비해 낮았다. 티로시나아제에 대한 메탄올과 열수추출물의 저해효과는 2.0 mg/ml의 농도에서 각각 91.33%와 91.99%를 나타내 양성대조군인 kojic acid의 99.61%와 매우 유사한 효과를 얻었다. 염증저해 효과 실험에서는 RAW 264.7 대식세포가 배양되고 있는 배지에 갈색먹물버섯 자실체의 메탄올과 열수추출물을 각각 전 처리 한 후 염증매개 물질인 LPS를 투여하여 메탄올과 열수 추출물의 NO 생성 저해효과를 조사한 결과 추출물의 농도가 증가함에 따라 생성된 NO의 양이 감소하는 경향을 나타내었다. 따라서 갈색먹물버섯의 자실체에는 항산화, 항당뇨, 항아세틸콜린에스터라제 항티로시나아제 및 항염증 효과를 나타내는 물질이 함유되어 있어서 천연 건강식품으로 이용이 가능할 것으로 사료된다.

Keywords

References

  1. Alam N, Yoon KN, Lee KR, Lee JS, Lee TS. 2011. Phenolic compounds concentration and appraisal of antioxidant and antioxidant and antityrosinase activities from the fruiting bodies of Pleurotus eryngii. Adv. Environ. Biol. 5(6):1104-1113.
  2. Alam M, Yoon KN, Lee JS, Cho HJ, Lee TS. 2012. Consequence of the antioxidant activities and tyrosinase inhibitory effects of various extracts from the fruiting bodies of Pleurotus ferulae. Saudi J. Biol. Sci. 19:111-118. https://doi.org/10.1016/j.sjbs.2011.11.004
  3. Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature. 181:1199-1200. https://doi.org/10.1038/1811199a0
  4. Ellman GL, Courtney KD, Andres VJ, Featherstone RM. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7:88-95. https://doi.org/10.1016/0006-2952(61)90145-9
  5. Fayuk D, Yakel JL. 2004. Regulation of nicotinic acetylcholine receptor channel function by acetylcholinesterase inhibitors in rat hippocampal CA1 interneurons. Mol. Pharmacol. 66: 658-666. https://doi.org/10.1124/mol.104.000042
  6. Gulcin I, Buyukokuroglu ME, Oktay M, Kufrevioglu OI. 2003. Antioxidant and analgesic activities of turpentine of Pinus nigra Arn. subsp. pallsiana (Lamb.) Holmboe. J. Ethnopharmacol. 86:51-8. https://doi.org/10.1016/S0378-8741(03)00036-9
  7. Ishihara Y, Oka M, Tsunakawa M, Tomita K, Hator, M, Yamamoto H, Kamei H, Miyaki T, Konishi M, Oki T. 1991. Melnostatin, a new melanin synthesis inhibitor. Production, isolation, chemical properties, structure and biological activity. J. Antibiotics. 44:25-32. https://doi.org/10.7164/antibiotics.44.25
  8. Kang HW. 2012. Antioxidant and anti-inflammatory effects of extracts from Flammulina velutipes (Curtis) Singer. J. Korean Soc. Food Nutr. 41:1072-1078. https://doi.org/10.3746/jkfn.2012.41.8.1072
  9. Kim DJ, Kim JM, Kim TH, Baek JM, Kim HS, Choe M. 2010. Anti-diabetic effects of mixed extracts from Lycium chinense, Cordyceps militaris, and Acanthopanax senticosus. Korean J. Plant Res. 23(5):423-429.
  10. Kim, KH, Roh. SG, Li, CR, Jin, CF, Kim, A, Choi, WC. 2008a. Anti-diabetic effects of banana leaf extracts(Lagerstroemia speciosa Pers.) through solvents. J. Life Sci. 18:1305-1311. https://doi.org/10.5352/JLS.2008.18.9.1305
  11. Kim, MY, Seguin, P, Ahn, JK, Kim, JJ, Chun, SC, Kim, EH, Seo, SH, Kang, EY, Kim, SL, Park, YJ. 2008b. Phenolic compound concentration and antioxidant activities of edible and medicinal mushrooms from Korea. J. Agric. Food Chem. 56:7265-7270. https://doi.org/10.1021/jf8008553
  12. Kim HS, Kim TW, Kim DJ, Lee JS, Kim KK, Choe M. 2013. Antioxidant activities and ${\alpha}$-glucosidase inhibitory effect of water extracts from medicinal plants. Korean J. Med. Crop Sci. 21(3):197-203. https://doi.org/10.7783/KJMCS.2013.21.3.197
  13. Kwon YJ, Kim MH, Choi, JS, Lee, TS. 2014. Free radical scavenging, anti-inflammatory and melanin synthesis inhibitory activities of Gloeostereum incarnatum. J. Mushrooms. 12(2):107-116. https://doi.org/10.14480/JM.2014.12.2.107
  14. Lee HJ, Do JR, Jung SK, Kim HK. 2014. Physiological properties of Sarcodon aspratus extracts by ethanol concentration. J. Korean Soc. Food Sci. Nutr. 43(5):656-660. https://doi.org/10.3746/jkfn.2014.43.5.656
  15. Lee SJ, Song, EJ, Kim KBWR, Lee CJ, jung JY, Kwak JH, Choi MK, Kim MJ, Kim TW, Ahn DH. 2010. Inhibitory effects of Sargassum thunbergii ethanol extract against ${\alpha}$-amylase. Korean J. Fish Aquat. Sci. 43(6):648-653. https://doi.org/10.5657/kfas.2010.43.6.648
  16. Lee YL, Huang GW, Liang ZC, Mau JL. 2007a. Antioxidant properties of three extracts from Pleurotus citrinopileatus. LWT-Food Sci. Technol. 40:823-833. https://doi.org/10.1016/j.lwt.2006.04.002
  17. Lee YL, Yen M, Mau JL. 2007b. Antioxidant properties of various extracts from Hypsizigus marmoreus. Food Chem. 104:1-9. https://doi.org/10.1016/j.foodchem.2006.10.063
  18. Mahmud, T, Tornus I, Egelkrout, E, Wolf, E, Uy, C, Floss, HG, Lee SS. 1999. Biosynthetic studies on the ${\alpha}$-glucosidase inhibitor acarbose in Actinoplanes sp.; 2-epi-5-epi-valiolone is the direct precursor of the valienamine moiety. J. Amer. Chem. Soc. 121:6973-6983. https://doi.org/10.1021/ja991102w
  19. Mau, J L, Chang, CN, Huang, SJ. Chen, CC. 2004. Antioxidant properties of methanolic extracts from Grifola frondosa, Morchella esculenta, and Termitomyces albuminosusmycelia. Food Chem. 87:111-118. https://doi.org/10.1016/j.foodchem.2003.10.026
  20. Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Immunol. Meth. 65: 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  21. Nam, BH, Jo WS, Choi YJ, Lee J, Y, Kang EY, Jeong MH, Lee JD. 2010. Inhibitory effects of melanin secretion on B16 melanoma cell of Cordyceps militaris water extract. Korean J. Mycol. 38: 167-171. https://doi.org/10.4489/KJM.2010.38.2.167
  22. Nguyen, TK, Shin, DB, Lee, KR, Shin, PG, Cheong, JC, Yoo, YB, Lee, MW, Jin, KH, Kim, HY, Im, KH, Lee, TS. 2013a. Antioxidant and anti-inflammatory activities of fruiting bodies of Dyctiophora indusiata. J. Mushroom Sci. Prod. 11(4):269-277. https://doi.org/10.14480/JM.2013.11.4.269
  23. Nguyen, TK, Shin, DB, Lee, KR, Cheong, JC, Yoo, YB, Lee, MW, Jin, KH, Im, KH, Lee, TS. 2013b. Antioxidant, antiinflammatory and anti-acetylcholinesterase activities of Phellinus xeranticus. J. Mushroom Sci. Prod. 11(4):278-286. https://doi.org/10.14480/JM.2013.11.4.278
  24. Park, WH, Lee, HD. 2003. Illustrated book of Korean medicinal mushrooms. Kyo-Hak Publishing Co. Ltd. Seoul.
  25. Prasad, NK, Divakar, S, Shivamurthy, GR, Aradhya, SM. 2005. Isolation of a free radical scavenging antioxidant from water spinach (Ipomoea aquatica Forsk). J. Sci. Food Agri. 85:1461-1468. https://doi.org/10.1002/jsfa.2125
  26. Ryu JH, Ahn H, Kim, JY, Kim, YK. 2003. Inhibitory activity of plant extracts on nitric oxide synthesis in LPS-activated macrophage. Phytother. Res. 17:485-489. https://doi.org/10.1002/ptr.1180
  27. Shim SM, Im KH, Kim JW, Shim MJ, Lee MW, Lee TS. 2003. Studies on immuno-modulatory and antitumor effects of crude polysaccharides extracted from Paecilomyces sinclairii. Korean J. Mycol. 31:155-160. https://doi.org/10.4489/KJM.2003.31.3.155
  28. Tsai SY, Huang SJ, Mau JL. 2006. Antioxidant properties of hot water extracts from Agrocybe cylindracea. Food Chem. 98:670-677. https://doi.org/10.1016/j.foodchem.2005.07.003
  29. Yena GC, Duhb PD, Tsaia L. 2002. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem. 79:307-313. https://doi.org/10.1016/S0308-8146(02)00145-0
  30. Wasser SP, Weis AL. 1999. Medicinal properties of substances occurring in higher basidiomycete mushrooms: current perspectives (review). Internat. J. Med. Mushrooms. 1:31-62 https://doi.org/10.1615/IntJMedMushrooms.v1.i1.30
  31. Worthington, V. 1993, Worthington Enzyme Manual, Biochemical Corporation, Freehold, pp.36-261.

Cited by

  1. In vitro antioxidant, anti-hyperglycemic, anti-cholinesterase, and inhibition of nitric oxide production activities of methanol and hot water extracts of Russula rosacea mushroom vol.13, pp.1, 2015, https://doi.org/10.14480/JM.2015.13.1.1
  2. A comparative overview of antioxidative properties and phenolic profiles of different fungal origins: fruiting bodies and submerged cultures of Coprinus comatus and Coprinellus truncorum vol.54, pp.2, 2017, https://doi.org/10.1007/s13197-016-2479-2