• Title/Summary/Keyword: R51

Search Result 2,664, Processing Time 0.028 seconds

A NOTE ON KADIRI'S EXPLICIT ZERO FREE REGION FOR RIEMANN ZETA FUNCTION

  • Jang, Woo-Jin;Kwon, Soun-Hi
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1291-1304
    • /
    • 2014
  • In 2005 Kadiri proved that the Riemann zeta function ${\zeta}(s)$ does not vanish in the region $$Re(s){\geq}1-\frac{1}{R_0\;{\log}\;{\mid}Im(s){\mid}},\;{\mid}Im(s){\mid}{\geq}2$$ with $R_0=5.69693$. In this paper we will show that $R_0$ can be taken $R_0=5.68371$ using Kadiri's method together with Platt's numerical verification of Riemann Hypothesis.

A Study on Indoor Radon Concentrations in Seoul( I ) (서울 일부지역(一部地域)의 실내(室內) Radon 오염도(汚染度) 조사(調査) 연구(硏究)( I ))

  • Kim, Chang-Kyun
    • Journal of radiological science and technology
    • /
    • v.19 no.1
    • /
    • pp.51-54
    • /
    • 1996
  • This study was conducted to find out the indoor radon concentrations from Jan. 1, to Dec. 31, 1995 in Seoul, and the following results were achieved; 1. The average concentration of indoor radon ranged from $0.51pCi/\ell$ to $0.78pCi/\ell$. 2. The correlation coefficients(r) of radon concentration and indoor meteorological conditions were as follows; 1) temperature : r=0.11 2) atmospheric pressure : r= -0.01 3) humidity : r=0.227.

  • PDF

Zero-divisors of Semigroup Modules

  • Nasehpour, Peyman
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.1
    • /
    • pp.37-42
    • /
    • 2011
  • Let M be an R-module and S a semigroup. Our goal is to discuss zero-divisors of the semigroup module M[S]. Particularly we show that if M is an R-module and S a commutative, cancellative and torsion-free monoid, then the R[S]-module M[S] has few zero-divisors of size n if and only if the R-module M has few zero-divisors of size n and Property (A).

ANNIHILATORS IN ONE-SIDED IDEALS GENERATED BY COEFFICIENTS OF ZERO-DIVIDING POLYNOMIALS

  • Kwak, Tai Keun;Lee, Dong Su;Lee, Yang
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.495-507
    • /
    • 2014
  • Nielsen and Rege-Chhawchharia called a ring R right McCoy if given nonzero polynomials f(x), g(x) over R with f(x)g(x) = 0, there exists a nonzero element r ${\in}$ R with f(x)r = 0. Hong et al. called a ring R strongly right McCoy if given nonzero polynomials f(x), g(x) over R with f(x)g(x) = 0, f(x)r = 0 for some nonzero r in the right ideal of R generated by the coefficients of g(x). Subsequently, Kim et al. observed similar conditions on linear polynomials by finding nonzero r's in various kinds of one-sided ideals generated by coefficients. But almost all results obtained by Kim et al. are concerned with the case of products of linear polynomials. In this paper we examine the nonzero annihilators in the products of general polynomials.

Principally Small Injective Rings

  • Xiang, Yueming
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.2
    • /
    • pp.177-185
    • /
    • 2011
  • A right ideal I of a ring R is small in case for every proper right ideal K of R, K + I ${\neq}$ = R. A right R-module M is called PS-injective if every R-homomorphism f : aR ${\rightarrow}$ M for every principally small right ideal aR can be extended to R ${\rightarrow}$ M. A ring R is called right PS-injective if R is PS-injective as a right R-module. We develop, in this article, PS-injectivity as a generalization of P-injectivity and small injectivity. Many characterizations of right PS-injective rings are studied. In light of these facts, we get several new properties of a right GPF ring and a semiprimitive ring in terms of right PS-injectivity. Related examples are given as well.

RINGS WITH A FINITE NUMBER OF ORBITS UNDER THE REGULAR ACTION

  • Han, Juncheol;Park, Sangwon
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.655-663
    • /
    • 2014
  • Let R be a ring with identity, X(R) the set of all nonzero, non-units of R and G(R) the group of all units of R. We show that for a matrix ring $M_n(D)$, $n{\geq}2$, if a, b are singular matrices of the same rank, then ${\mid}o_{\ell}(a){\mid}={\mid}o_{\ell}(b){\mid}$, where $o_{\ell}(a)$ and $o_{\ell}(b)$ are the orbits of a and b, respectively, under the left regular action. We also show that for a semisimple Artinian ring R such that $X(R){\neq}{\emptyset}$, $$R{{\sim_=}}{\oplus}^m_{i=1}M_n_i(D_i)$$, with $D_i$ infinite division rings of the same cardinalities or R is isomorphic to the ring of $2{\times}2$ matrices over a finite field if and only if ${\mid}o_{\ell}(x){\mid}={\mid}o_{\ell}(y){\mid}$ for all $x,y{\in}X(R)$.

NONADDITIVE STRONG COMMUTATIVITY PRESERVING DERIVATIONS AND ENDOMORPHISMS

  • Zhang, Wei;Xu, Xiaowei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.1127-1133
    • /
    • 2014
  • Let S be a nonempty subset of a ring R. A map $f:R{\rightarrow}R$ is called strong commutativity preserving on S if [f(x), f(y)] = [x, y] for all $x,y{\in}S$, where the symbol [x, y] denotes xy - yx. Bell and Daif proved that if a derivation D of a semiprime ring R is strong commutativity preserving on a nonzero right ideal ${\rho}$ of R, then ${\rho}{\subseteq}Z$, the center of R. Also they proved that if an endomorphism T of a semiprime ring R is strong commutativity preserving on a nonzero two-sided ideal I of R and not identity on the ideal $I{\cup}T^{-1}(I)$, then R contains a nonzero central ideal. This short note shows that the conclusions of Bell and Daif are also true without the additivity of the derivation D and the endomorphism T.